河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题含解析_第1页
河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题含解析_第2页
河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题含解析_第3页
河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题含解析_第4页
河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省迁西县一中2025届高一下数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.2.已知,,则()A. B. C. D.3.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,24.若非零实数满足,则下列不等式成立的是()A. B. C. D.5.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.56.下列函数中,既是奇函数又是增函数的为()A. B. C. D.7.若,,,点C在AB上,且,设,则的值为()A. B. C. D.8.在中,内角所对的边分别为,且,则()A. B. C. D.9.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为()A. B. C. D.10.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为19二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足则的最小值为__________.12.的内角的对边分别为.若,则的面积为__________.13.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.14.已知,,,,则________.15.若,则的值为_______.16.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?18.计算:(1)(2)(3)19.如图所示,在直三棱柱中,,平面,D为AC的中点.(1)求证:平面;(2)求证:平面;(3)设E是上一点,试确定E的位置使平面平面BDE,并说明理由.20.(Ⅰ)已知向量,求与的夹角的余弦值;(Ⅱ)已知角终边上一点,求的值.21.已知,,分别为内角,,的对边,且.(1)求角;(2)若,,求边上的高.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选C.2、D【解析】由题意可得,即,则,所以,即,也即,所以,应选答案D.点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解.3、C【解析】

将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【点睛】本题考查了中位数和众数的概念,属于基础题.4、C【解析】

对每一个不等式逐一分析判断得解.【详解】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、B【解析】

由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【点睛】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.6、D【解析】

根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.7、B【解析】

利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8、C【解析】

根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.9、B【解析】

由随机事件的概念作答.【详解】抛掷一枚质地均匀的骰子,出现正面朝上的点数为4,这个事件是随机事件,每次抛掷出现的概率是相等的,都是,不会随机抛掷次数的变化而变化.故选:B.【点睛】本题考查随机事件的概率,属于基础题.10、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别‚相关量的定义二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.12、【解析】

本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.13、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.14、【解析】

根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.15、【解析】

把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.16、.【解析】

根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)﹒(2)时,最大车流量辆.【解析】

(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.18、(1);(2);(3).【解析】

利用诱导公式,对每一道题目进行化简求值.【详解】(1)原式.(2)原式.(3)原式.【点睛】在使用诱导公式时,注意“奇变偶不变,符号看象限”法则的应用,即辅助角为的奇数倍,函数名要改变;若为的偶数倍,函数名不改变.19、(1)证明见详解,(2)证明见详解,(3)当为的中点时,平面平面BDE,证明见详解【解析】

(1)连接与相交于,可得,结合线面平行的判定定理即可证明平面(2)先证明和即可得出平面,然后可得,又,即可证明平面(3)当为的中点时,平面平面BDE,由已知易得,结合平面可得平面,进而根据面面垂直的判定定理得到结论.【详解】(1)如图,连接与相交于,则为的中点连接,又为的中点所以,又平面,平面所以平面(2)因为,所以四边形为正方形所以又因为平面,平面所以所以平面,所以又在直三棱柱中,所以平面(3)当为的中点时,平面平面BDE因为分别是的中点所以,因为平面所以平面,又平面所以平面平面BDE【点睛】本题考查的是立体几何中线面平行和垂直的证明,要求我们要熟悉并掌握平行与垂直有关的判定定理和性质定理,在证明的过程中要注意步骤的完整.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知分别求得及与,再由数量积求夹角计算结果;(Ⅱ)利用任意角的三角函数的定义求得sinα,再由三角函数的诱导公式化简求值.【详解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)为角α终边上一点,∴,.则sin2α.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论