版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省衡水市高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,82.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F33.下列角位于第三象限的是()A. B. C. D.4.已知则的值为()A. B. C. D.5.圆的圆心坐标和半径分别为()A. B. C. D.6.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,27.等差数列中,,且,且,是其前项和,则下列判断正确的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于8.已知等比数列中,,该数列的公比为A.2 B.-2 C. D.39.在中,角所对应的边分别为,且满足,则的形状为()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等边三角形10.甲、乙两名篮球运动员最近五场比赛的得分如茎叶图所示,则()A.甲的中位数和平均数都比乙高B.甲的中位数和平均数都比乙低C.甲的中位数比乙的中位数高,但平均数比乙的平均数低D.甲的中位数比乙的中位数低,但平均数比乙的平均数高二、填空题:本大题共6小题,每小题5分,共30分。11.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).12.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________13.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.14.已知正实数满足,则的最小值为__________.15.已知棱长都相等正四棱锥的侧面积为,则该正四棱锥内切球的表面积为________.16.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.18.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.19.已知函数.(1)求的单调递增区间;(2)求不等式的解集.20.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.21.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由题意得,,选C.考点:茎叶图2、A【解析】
通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【点睛】本题考查进制的转化,只需按照流程执行即可.3、D【解析】
根据第三象限角度的范围,结合选项,进行分析选择.【详解】第三象限的角度范围是.对A:,是第二象限的角,故不满足题意;对B:是第二象限的角度,故不满足题意;对C:是第二象限的角度,故不满足题意;对D:,是第三象限的角度,满足题意.故选:D.【点睛】本题考查角度范围的判断,属基础题.4、B【解析】
直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.5、B【解析】
根据圆的标准方程形式直接确定出圆心和半径.【详解】因为圆的方程为:,所以圆心为,半径,故选:B.【点睛】本题考查给定圆的方程判断圆心和半径,难度较易.圆的标准方程为,其中圆心是,半径是.6、C【解析】
将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【点睛】本题考查了中位数和众数的概念,属于基础题.7、C【解析】
由,且可得,,,,结合等差数列的求和公式即等差数列的性质即可判断.【详解】,且,,数列的前项都是负数,,,,由等差数列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故选:C.【点睛】本题考查等差数列前项和符号的判断,解题时要充分结合等差数列下标和的性质以及等差数列求和公式进行计算,考查分析问题和解决问题的能力,属于中等题.8、B【解析】分析:根据等比数列通项公式求公比.详解:因为,所以选B.点睛:本题考查等比数列通项公式,考查基本求解能力.9、A【解析】
由正弦定理进行边化角,再由二倍角公式可得,则或,所以或,即可判断三角形的形状.【详解】由正弦定理得,则,因此在中,或,即或.故选:A【点睛】本题考查利用正弦定理进行边角互化,判断三角形形状,属于基础题.10、B【解析】
分别计算出两组数据的中位数和平均数即可得出选项.【详解】根据题意:甲的平均数为:,中位数为29,乙的平均数为:,中位数为30,所以甲的中位数和平均数都比乙低.故选:B【点睛】此题考查根据茎叶图表示的数据分别辨析平均数和中位数的大小关系,分别计算求解即可得出答案.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.12、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.13、{m|-1<m≤1或m=-}【解析】
由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.14、6【解析】
由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.15、【解析】
根据侧面积求出正四棱锥的棱长,画出组合体的截面图,根据三角形的相似求得四棱锥内切球的半径,于是可得内切球的表面积.【详解】设正四棱锥的棱长为,则,解得.于是该正四棱锥内切球的大圆是如图△PMN的内切圆,其中,.∴.设内切圆的半径为,由∽,得,即,解得,∴内切球的表面积为.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16、②③④【解析】
根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,.由于,可得.又,所以.由得,满足,故.点睛:⑴求圆的方程一般有两种方法:①待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程;②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.18、(1)见解析(2)【解析】试题分析:(Ⅰ)要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.知,因此要证平面,从而只要证,这在中可证;(Ⅱ)要求点到平面的距离,可过点作平面的垂线,由(Ⅰ)的证明,可得平面,从而有平面,因此平面平面,因此只要过作于,则就是的要作的垂线,线段的长就是所要求的距离.试题解析:(Ⅰ)证明:因为,,由余弦定理得.从而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足为.已知底面,则,由(Ⅰ)知,又,所以.故平面,.则平面.由题设知,,则,,根据,得,即点到面的距离为.考点:线面垂直的判定与性质.点到平面的距离.19、(1),;(2),【解析】
(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理商合同书范例
- 3D打印工程合同
- 三方智能家居控制系统合作协议
- 人才派遣劳务合同
- 产学研合作实验室协议
- 交通运输HSE协议书
- 产品加工承揽合同模板
- 人力资源服务合同评审表
- 产品总代理合同范本
- 人力资源代理协议书
- 物理人教版2024版八年级上册5.1 透镜 课件02
- 期中测试卷(1-4单元)(试题)-2024-2025学年人教版数学四年级上册
- 应用文写作+以“A+Clean-up+Activity”为题给学校英语报写一篇新闻报道+讲义 高二上学期月考英语试题
- 2024年华电电力科学研究院限公司招聘26人历年高频难、易错点500题模拟试题附带答案详解
- 校园反诈骗课件
- 期中测试卷-2024-2025学年统编版语文六年级上册
- 中石油克拉玛依石化有限责任公司招聘笔试题库2024
- 上海市高行中学2024-2025学年高二上学期9月质量检测数学试卷
- 保险的免责协议书模板
- 胸外科快速康复护理课件
- T-CRHA 046-2024 标准手术体位安置技术规范
评论
0/150
提交评论