版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省张掖市数学高一下期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列,…的一个通项公式是()A.B.C.D.2.将函数的图像左移个单位,则所得到的图象的解析式为A. B.C. D.3.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.4.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2975..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.86.已知,,,是球球面上的四个点,平面,,,则该球的表面积为()A. B. C. D.7.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.98.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A. B.C. D.9.已知是奇函数,且.若,则()A.1 B.2 C.3 D.410.设等差数列an的前n项和为Sn,若a1>0,A.S10 B.S11 C.S二、填空题:本大题共6小题,每小题5分,共30分。11.如图,为内一点,且,延长交于点,若,则实数的值为_______.12.圆和圆交于A,B两点,则弦AB的垂直平分线的方程是________.13.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.14.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.15.若角的终边过点,则______.16.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数和都是定义在集合上的函数,对于任意的,都有成立,称函数与在上互为“互换函数”.(1)函数与在上互为“互换函数”,求集合;(2)若函数(且)与在集合上互为“互换函数”,求证:;(3)函数与在集合且上互为“互换函数”,当时,,且在上是偶函数,求函数在集合上的解析式.18.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.19.某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.20.设函数,定义域为.(1)求函数的最小正周期,并求出其单调递减区间;(2)求关于的方程的解集.21.如图,在中,,点在边上,(1)求的度数;(2)求的长度.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.2、C【解析】
由三角函数的图象变换,将函数的图像左移个单位,得到,即可得到函数的解析式.【详解】由题意,将函数的图像左移个单位,可得的图象,所以得到的函数的解析式为,故选C.【点睛】本题主要考查了三角函数的图象变换,其中熟记三角函数的图象变换的规则是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.3、C【解析】
分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.4、B【解析】
根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.5、C【解析】因为数列为等比数列,所以,所以.6、B【解析】
根据截面法,作出球心O与外接圆圆心所在截面,利用平行四边形和勾股定理可求得球半径,从而得到结果.【详解】如图,的外接圆圆心E为BC的中点,设球心为O,连接OE,OP,OA,D为PA的中点,连接OD.根据直角三角形的性质可得,且平面,则//,由为等腰三角形可得,又,所以//,则四边形ODAE是矩形,所以=,而,中,根据勾股定理可得,所以该球的表面积为.所以本题答案为B.【点睛】本题考查求三棱锥外接球的表面积问题,几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.7、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】
利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.9、C【解析】
根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.10、C【解析】分析:利用等差数列的通项公式,化简求得a20+a详解:在等差数列an中,a则3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0点睛:本题考查了等差数列的通项公式,及等差数列的前n项和Sn的性质,其中解答中根据等差数列的通项公式,化简求得a20+二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,得,可得出,再利用、、三点共线的向量结论得出,可解出实数的值.【详解】由,得,可得出,由于、、三点共线,,解得,故答案为.【点睛】本题考查三点共线问题的处理,解题的关键就是利用三点共线的向量等价条件的应用,考查运算求解的能力,属于中等题.12、【解析】
弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.13、【解析】
根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【详解】,又,,时,面积的最大值为.故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.14、【解析】
根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.15、-2【解析】
由正切函数定义计算.【详解】根据正切函数定义:.故答案为-2.【点睛】本题考查三角函数的定义,掌握三角函数定义是解题基础.16、【解析】
先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析(3),【解析】
(1)利用列方程,并用二倍角公式进行化简,求得或,进而求得集合.(2)由,得(且),化简后根据的取值范围,求得的取值范围.(3)首先根据为偶函数,求得当时,的解析式,从而求得当时,的解析式.依题意“当,恒成立”,化简得到,根据函数解析式的求法,求得时,以及,进而求得函数在集合上的解析式.【详解】(1)由得化简得,,所以或.由解得或,,即或,.又由解得,.所以集合,或,即集合.(2)证明:由,得(且).变形得,所以.因为,则,所以.(3)因为函数在上是偶函数,则.当,则,所以.所以,因此当时,.由于与函数在集合上“互换函数”,所以当,恒成立.即对于任意的恒成立.即.于是有,,.上述等式相加得,即.当()时,,所以.而,,所以当时,,【点睛】本小题主要考查新定义函数的理解和运用,考查二倍角公式和特殊角的三角函数值,考查指数运算和指数函数的值域,考查根据函数的奇偶性求函数的解析式,考查化归与转化的数学思想方法,考查分析、思考与解决问题的能力,属于难题.18、(Ⅰ)见解析(Ⅱ)见解析【解析】
(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.19、(1)0.3,直方图见解析;(2)121;(3).【解析】
(1)频率分布直方图中,小矩形的面积等于这一组的频率,而频率的和等于1,可求出分数在内的频率,即可求出矩形的高,画出图象即可;(2)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相差再求出它们的和即可求出本次考试的平均分;(3)先计算、分数段的人数,然后按照比例进行抽取,设从样本中任取2人,至多有1人在分数段为事件,然后列出基本事件空间包含的基本事件,以及事件包含的基本事件,最后将包含事件的个数求出题目比值即可.【详解】(1)分数在[120,130)内的频率为:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,补全后的直方图如下:(2)平均分为:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为:60×0.15=9人,[120,130)分数段的人数为:60×0.3=18人.∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人并分别记为a,b,c,d;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15种.事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种,∴.20、(1)最小正周期为,单调递减区间为;(2).【解析】
(1)利用两角差的余弦公式、二倍角降幂公式以及辅助角公式将函数的解析式化简为,由周期公式可得出函数的最小正周期,由,解出的范围得出函数的单调递减区间;(2)由,得出,解出该方程可得出结果.【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摄影师与摄影棚运营方居间合同2篇
- 二零二五版社区配送订餐服务合同范本与社区管理协议3篇
- 二零二五年度酒店地毯绿色生产与环保认证合同3篇
- 二零二五年新能源充电桩建设运营合同样本3篇
- 二零二五版高端住宅项目全程代理销售合同3篇
- 二零二五版基因合成与生物技术知识产权转让合同3篇
- 二零二五版10月大型设备运输委托合同2篇
- 二零二五版广西事业单位聘用示范性合同模板12篇
- 2025年度出口货物环保认证服务合同3篇
- 二零二五年度腻子材料国际贸易代理合同2篇
- 山东省潍坊市2024-2025学年高三上学期期末 地理试题(无答案)
- 劳动法培训课件
- 2024年建筑施工安全工作计划(3篇)
- 2024届九省联考英语试题(含答案解析、MP3及录音稿)
- 仓库消防知识安全培训
- 从事专业与所学专业不一致专业技术人员申报职称岗位任职合格证明附件6
- 我国房屋建筑模板技术的研究综述
- 人教版小学三年级上册数学竖式笔算练习题
- 航天科工集团在线测评题
- 山东省潍坊新2025届高三语文第一学期期末经典试题含解析
- 医院三基考核试题(康复理疗科)
评论
0/150
提交评论