2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题含解析_第1页
2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题含解析_第2页
2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题含解析_第3页
2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题含解析_第4页
2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省罗山高中老校区高一数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.62.在等差数列中,若,且它的前项和有最大值,则使成立的正整数的最大值是()A.15 B.16 C.17 D.143.若是两条不同的直线,是三个不同的平面,则下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.若满足,且的最小值为,则实数的值为()A. B. C. D.5.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.6.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形7.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与8.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.9.如图所示,程序框图算法流程图的输出结果是A. B. C. D.10.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离二、填空题:本大题共6小题,每小题5分,共30分。11.和2的等差中项的值是______.12.数列的前项和,则的通项公式_____.13.若,,,则M与N的大小关系为___________.14.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.15.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,,,,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是.(下表是随机数表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795416.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.18.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.19.设正项等比数列且的等差中项为.(1)求数列的通项公式;(2)若,数列的前n项为,数列满足,为数列的前项和,求.20.已知等比数列的公比为,是的前项和;(1)若,,求的值;(2)若,,有无最值?说明理由;(3)设,若首项和都是正整数,满足不等式,且对于任意正整数有成立,问:这样的数列有几个?21.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.2、C【解析】

由题意可得,,且,由等差数列的性质和求和公式可得结论.【详解】∵等差数列的前项和有最大值,∴等差数列为递减数列,又,∴,,∴,又,,∴成立的正整数的最大值是17,故选C.【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.3、C【解析】

试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个相交平面内的直线也可以平行,所以B不正确;垂直于同一个平面的两个平面不一定垂直,也可能平行或相交,所以D不正确;根据面面垂直的判定定理知C正确.考点:空间直线、平面间的位置关系.【详解】请在此输入详解!4、B【解析】

首先画出满足条件的平面区域,然后根据目标函数取最小值找出最优解,把最优解点代入目标函数即可求出的值.【详解】画出满足条件的平面区域,如图所示:,由,解得:,由得:,显然直线过时,z最小,∴,解得:,故选B.【点睛】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.5、B【解析】

通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.6、D【解析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.7、C【解析】

利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.8、A【解析】

根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.9、D【解析】

模拟程序图框的运行过程,得出当时,不再运行循环体,直接输出S值.【详解】模拟程序图框的运行过程,得S=0,n=2,n<8满足条件,进入循环:S=满足条件,进入循环:进入循环:不满足判断框的条件,进而输出s值,该程序运行后输出的是计算:.故选D.【点睛】本题考查了程序框图的应用问题,是基础题目.根据程序框图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题12、【解析】

根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题13、【解析】

根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.14、(或写成)【解析】

光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。15、1【解析】试题分析:依据随机数表,抽取的编号依次为785,567,199,1.第四粒编号为1.考点:随机数表.16、①②【解析】

根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3)利用垂径公式,明确是的中点,进而得到以线段为直径的圆的方程.【详解】()圆的方程可化为,圆心为,半径为.当直线过圆心,时,,∴直线的方程为,即.()因为直线的倾斜角为且过,所以直线的方程为,即.圆心到直线的距离,∴弦.()由于,而弦心距,∴,∴是的中点.故以线段为直径的圆圆心是,半径为.故以线段为直径的圆的方程为.18、(1)或;(2).【解析】

(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.19、(1);(2).【解析】

(1)利用已知条件列出方程,求出首项与公比,然后求解通项公式.(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.【详解】(1)设等比数列的公比为,由题意,得,解得,所以.(2)由(1)得,∴,∴,∴.【点睛】本题考查数列的递推关系式以及数列求和,考查转化思想以及计算能力.20、(1);(2),最小值,最大值;,最小值,无最大值;(3)个【解析】

(1)由,分类讨论,分别求得,结合极限的运算,即可求解;(2)由等比数列的前项和公式,求得,再分和两种情况讨论,即可求解,得到结论;(3)由不等式,求得,在由等比数列的前项和公式,得到,根据不等式成立,可得,结合数列的单调性,即可求解.【详解】(1)由题意,等比数列,且,①当时,可得,,所以,②当时,可得,所以,综上所述,当,时,.(2)由等比数列的前项和公式,可得,因为且,所以,①当时,单调递增,此时有最小值,无最大值;②当时,中,当为偶数时,单调递增,且;当为奇数时,单调递减,且;分析可得:有最大值,最小值为;综上述,①当时,的最小值为,最大值为;②当时,的最小值为,无最大值;(3)由不等式,可得,又由等比数列的前项和公式,可得,因为首项和都是正整数,所以,又由对于任意正整数有成立,可得,联立可得,设,由为正整数,可得单调递增,所以函数单调递减,所以,且所以,当时,,即,解得,此时有个,当时,,即,解得,此时有个,所以共有个.【点睛】本题主要考查了等比数列的前项和公式,数列的极限的计算,以及数列的单调性的综合应用,其中解答中熟记等比数列的前项和公式,极限的运算法则,以及合理分类讨论是解答的关键,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论