浙江省杭州外国语学校2025届数学高一下期末考试试题含解析_第1页
浙江省杭州外国语学校2025届数学高一下期末考试试题含解析_第2页
浙江省杭州外国语学校2025届数学高一下期末考试试题含解析_第3页
浙江省杭州外国语学校2025届数学高一下期末考试试题含解析_第4页
浙江省杭州外国语学校2025届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州外国语学校2025届数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两名篮球运动员最近五场比赛的得分如茎叶图所示,则()A.甲的中位数和平均数都比乙高B.甲的中位数和平均数都比乙低C.甲的中位数比乙的中位数高,但平均数比乙的平均数低D.甲的中位数比乙的中位数低,但平均数比乙的平均数高2.在中,内角,,的对边分别为,,.若,则的形状是A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定3.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.4.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.已知函数,则函数的最小正周期为()A. B. C. D.6.下列函数中,在区间上为增函数的是().A. B. C. D.7.已知三个内角、、的对边分别是,若,则等于()A. B. C. D.8.展开式中的常数项为()A.1 B.21 C.31 D.519.“是第二象限角”是“是钝角”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要10.等差数列中,已知,则()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列满足,则____________.12.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设,则阴影部分的面积是__________.13.若等比数列满足,且公比,则_____.14.在轴上有一点,点到点与点的距离相等,则点坐标为____________.15.用秦九韶算法求多项式当时的值的过程中:,__.16.已知正数、满足,则的最小值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在三棱柱中,侧棱底面,,D为的中点,.(1)求证:平面;(2)求与所成角的余弦值.18.在锐角三角形中,分别是角的对边,且.(1)求角的大小;(2)若,求的取值范围.19.已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.20.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.21.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

分别计算出两组数据的中位数和平均数即可得出选项.【详解】根据题意:甲的平均数为:,中位数为29,乙的平均数为:,中位数为30,所以甲的中位数和平均数都比乙低.故选:B【点睛】此题考查根据茎叶图表示的数据分别辨析平均数和中位数的大小关系,分别计算求解即可得出答案.2、C【解析】

由正弦定理可推得,再由余弦定理计算最大边的余弦值即可判断三角形形状.【详解】因为,所以,设,,,则角为的最大角,由余弦定理可得,即,故是钝角三角形.【点睛】本题考查用正弦定理和余弦定理解三角形,属于基础题.3、A【解析】

先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.4、C【解析】

利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,

只需将函数图象上所有的点向左平移个单位长度,

故选C.5、D【解析】

根据二倍角公式先化简,再根据即可。【详解】由题意得,所以周期为.所以选择D【点睛】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。6、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.7、D【解析】

根据正弦定理把边化为对角的正弦求解.【详解】【点睛】本题考查正弦定理,边角互换是正弦定理的重要应用,注意增根的排除.8、D【解析】常数项有三种情况,都是次,或者都是次,或者都是二次,故常数项为9、B【解析】

由α是钝角可得α是第二象限角,反之不成立,则答案可求.【详解】若α是钝角,则α是第二象限角;反之,若α是第二象限角,α不一定是钝角,如α=﹣210°.∴“α是第二象限角”是“α是钝角”的必要非充分条件.故选B.【点睛】本题考查钝角、象限角的概念,考查了充分必要条件的判断方法,是基础题.10、B【解析】

已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】

利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题12、【解析】

:设两个半圆交于点,连接,可得直角扇形的面积等于以为直径的两个半圆的面积之和,平分,可得阴影部分的面积.【详解】解:设两个半圆交于点,连接,,∴直角扇形的面积等于以为直径的两个半圆的面积之和,由对称性可得:平分,故阴影部分的面积是:.故答案为:.【点睛】本题主要考查扇形的计算公式,相对不难.13、.【解析】

利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.14、【解析】

设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.15、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.16、.【解析】

利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【点睛】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】

(1)连接,设与相交于点O,连接OD.证明OD为的中位线,得,即可证明;(2)由(1)可知,为与所成的角或其补角,在中,利用余弦定理求解即可【详解】(1)证明:如图,连接,设与相交于点O,连接OD.∵四边形是平行四边形.∴点O为的中点.∵D为AC的中点,∴OD为的中位线,平面,平面,平面.(2)由(1)可知,为与所成的角或其补角在中,D为AC的中点,则同理可得,在中,与BD所成角的余弦值为.【点睛】本题考查线面平行的判定,异面直线所成的角,考查空间想象能力与计算能力是基础题18、(1);(2)【解析】

(1)利用正弦定理边化角,可整理求得,根据三角形为锐角三角形可确定的取值;(2)利用正弦定理可将转化为,利用两角和差正弦公式、辅助角公式整理得到,根据的范围可求得正弦型函数的值域,进而得到所求取值范围.【详解】(1)由正弦定理得:为锐角三角形,,即(2)由正弦定理得:为锐角三角形,,即【点睛】本题考查正弦定理边化角的应用、边长之和的范围的求解问题;求解边长之和范围问题的关键是能够利用正弦定理将问题转化为三角函数值域的求解问题;易错点是在求解三角函数值域时,忽略角的范围限制,造成求解错误.19、(1),函数的单调递增区间为;(2).【解析】

(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.20、(1)或;(2).【解析】

(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论