版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省十所名校2025届高一数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点是角终边上一点,则的值为()A. B. C. D.2.已知非零向量,满足,且,则与的夹角为
A. B. C. D.3.已知点,,则直线的斜率是()A. B. C.5 D.14.已知集合,则().A. B. C. D.5.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等6.设,且,则()A. B. C. D.7.已知数列满足递推关系,则()A. B. C. D.8.在中,,,,则=()A. B.C. D.9.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.10.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.12.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人13.已知x,y满足,则z=2x+y的最大值为_____.14.已知变量,满足,则的最小值为________.15.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.16.已知斜率为的直线的倾斜角为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且满足:,.(1)求数列的通项公式;(2)若,求数列的前项和.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.20.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.21.已知数列的前项和为.(Ⅰ)当时,求数列的通项公式;(Ⅱ)当时,令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.2、B【解析】
根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.3、D【解析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4、B【解析】
求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【详解】因为,所以,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.5、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.6、B【解析】
利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.7、B【解析】
两边取倒数,可得新的等差数列,根据等差数列的通项公式,可得结果.【详解】由,所以则,又,所以所以数列是以2为首项,1为公比的等差数列所以,则所以故选:B【点睛】本题主要考查由递推公式得到等差数列,难点在于取倒数,学会观察,属基础题.8、C【解析】
根据正弦定理,代入即可求解.【详解】因为中,,,由正弦定理可知代入可得故选:C【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.9、B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.10、B【解析】试题分析:根据条件中职工总数和青年职工人数,以及中年和老年职工的关系列出方程,解出老年职工的人数,根据青年职工在样本中的个数,算出每个个体被抽到的概率,用概率乘以老年职工的个数,得到结果.设老年职工有x人,中年职工人数是老年职工人数的2倍,则中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个个体被抽到的概率是用分层抽样的比例应抽取×90=18人.故选B.考点:分层抽样点评:本题是一个分层抽样问题,容易出错的是不理解分层抽样的含义或与其它混淆.抽样方法是数学中的一个小知识点,但一般不难,故也是一个重要的得分点,不容错过二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以.考点:向量坐标运算.12、16【解析】
利用分层抽样的性质,直接计算,即可求得,得到答案.【详解】由题意,可知共有1024名学生、家长、老师参加,其中家长256人,通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.故答案为16【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、1.【解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.【详解】解:,在坐标系中画出图象,三条线的交点分别是,,,在中满足的最大值是点,代入得最大值等于1.故答案为:1.【点睛】本题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14、0【解析】
画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.15、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.16、【解析】
由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【点睛】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)当时,可求出,当时,利用可求出是以2为首项,2为公比的等比数列,故而可求出其通项公式;(2)由裂项相消可求出其前项和.试题解析:(1)依题意:当时,有:,又,故,由①当时,有②,①-②得:化简得:,∴是以2为首项,2为公比的等比数列,∴.(2)由(1)得:,∴∴18、(Ⅰ)(Ⅱ)【解析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【解析】
本题可先将甲种薄钢板设为x张,乙种薄钢板设为y张,然后根据题意,得出两个不等式关系,也就是3x+6y≥45、5x+6y≥55以及薄钢板的总面积是z=2x+3y,然后通过线性规划画出图像并求出总面积z=2x+3y的最小值,最后得出结果.【详解】设甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳3x+6y个,B种产品外壳5x+6y个,由题意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄钢板的总面积是可行域的阴影部分如图所示,其中l1:3x+6y=45、l2:因目标函数z=2x+3y在可行域上的最小值在区域边界的A5此时z的最小值为2×5+3×5=25即甲、乙两种薄钢板各5张,能保证制造A、【点睛】(1)利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的平面直角坐标系中的任意一条直线l;②平移:将l平行移动,以确定最优解所对应的点的位置.有时需要进行目标函数l和可行域边界的斜率的大小比较;③求值:解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.(2)用线性规划解题时要注意z的几何意义.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学1.2 水的三态变化(30课件)
- 20XX年1月华懋达集团年会庆典概念方案
- 2024年烟台货运资格证模拟考试题
- 算法设计与分析 课件 5.9-动态规划应用-最优二叉搜索树
- 2024年宣城客运资格证考试答题
- 2024年贵州客运从业资格证的考试题目是什么题
- 吉首大学《结构试验》2021-2022学年第一学期期末试卷
- 吉首大学《当代中国电影》2021-2022学年期末试卷
- 《机床夹具设计》试题4
- 吉林艺术学院《音乐文论写作Ⅱ》2021-2022学年第一学期期末试卷
- 2024中科院心理咨询师考试复习题库(官方版)-上单选题汇
- 小学未成年人思想道德建设工作实施方案
- 化工公司安全知识竞赛题库(共1000题)
- GB/T 44421-2024矫形器配置服务规范
- 福建省福州市(2024年-2025年小学二年级语文)统编版期中考试试卷(含答案)
- 2024-2024部编版九年级语文上册期末考试测试卷(附答案)
- 争做“四有好老师”-当好“四个引路人”
- 2024-2025学年八年级生物上册第一学期 期末综合模拟测试卷( 人教版)
- 2024-2030年中国生物炭行业市场发展趋势与前景展望战略分析报告
- 中国融通地产社招笔试
- YDT 4565-2023物联网安全态势感知技术要求
评论
0/150
提交评论