2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题含解析_第1页
2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题含解析_第2页
2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题含解析_第3页
2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题含解析_第4页
2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省北镇市中学高一数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.2.已知在中,,且,则的值为()A. B. C. D.3.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角

④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.44.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要5.正方体中,直线与所成角的余弦值为()A. B. C. D.6.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.7.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.8.已知数列中,,,则等于()A. B. C. D.9.在区间上随机选取一个数,则的概率为()A. B. C. D.10.如图,在三角形中,点是边上靠近的三等分点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若点为圆的弦的中点,则弦所在的直线的方程为___________.12.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.13.如果数据的平均数是,则的平均数是________.14.一个扇形的半径是,弧长是,则圆心角的弧度数为________.15.设O点在内部,且有,则的面积与的面积的比为.16.已知{}是等差数列,是它的前项和,且,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.18.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.19.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.20.已知数列的前n项和为,且,求数列的通项公式.21.近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A2、C【解析】

先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3、B【解析】

把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.4、C【解析】

由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.5、C【解析】

作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【点睛】本题主要考查异面直线所成角的余弦值,难度不大.6、D【解析】由正弦定理得A+C=180°-60°=120°,

由题意得:A有两个值,且这两个值之和为180°,

∴利用正弦函数的图象可得:60°<A<120°,

若A=90,这样补角也是90°,一解,不合题意,<sinA<1,

∵x=sinA,则2<x<故选D7、A【解析】

根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.8、A【解析】

变形为,利用累加法和裂项求和计算得到答案.【详解】故选:A【点睛】本题考查了累加法和裂项求和,意在考查学生对于数列方法的灵活应用.9、C【解析】

根据几何概型概率公式直接求解可得结果.【详解】由几何概型概率公式可知,所求概率本题正确选项:【点睛】本题考查几何概型中的长度型概率问题的求解,属于基础题.10、A【解析】

利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】因为点是边上靠近的三等分点,所以,所以,故选:A.【点睛】本题考查向量的加、减法以及数乘运算,需要学生熟练掌握三角形法则和共线定理.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).12、二【解析】

由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.13、5【解析】

根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.14、2【解析】

直接根据弧长公式,可得.【详解】因为,所以,解得【点睛】本题主要考查弧长公式的应用.15、3【解析】

分别取AC、BC的中点D、E,

,

,即,

是DE的一个三等分点,

,

故答案为:3.16、【解析】

根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)9或35或133【解析】

(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【点睛】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。18、(1)见证明;(2)【解析】

(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所以,则,以上两式相减得:,所以.【点睛】数列为等差数列,数列为等比数列,则数列的求和可采用错位相减法求和,注意求和后要保证常数的准确性.19、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】

(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.20、【解析】

利用公式,计算的通项公式,再验证时的情况.【详解】当时,;当时,不满足上式.∴【点睛】本题考查了利用求数列通项公式,忽略的情况是容易犯的错误.21、(1)(2)应安排名民工参与抢修,才能使总损失最小【解析】

(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论