![河北省承德市第一中学2025届高一数学第二学期期末联考试题含解析_第1页](http://file4.renrendoc.com/view14/M0B/11/17/wKhkGWZ4ShuAeJnLAAIafUEoknQ477.jpg)
![河北省承德市第一中学2025届高一数学第二学期期末联考试题含解析_第2页](http://file4.renrendoc.com/view14/M0B/11/17/wKhkGWZ4ShuAeJnLAAIafUEoknQ4772.jpg)
![河北省承德市第一中学2025届高一数学第二学期期末联考试题含解析_第3页](http://file4.renrendoc.com/view14/M0B/11/17/wKhkGWZ4ShuAeJnLAAIafUEoknQ4773.jpg)
![河北省承德市第一中学2025届高一数学第二学期期末联考试题含解析_第4页](http://file4.renrendoc.com/view14/M0B/11/17/wKhkGWZ4ShuAeJnLAAIafUEoknQ4774.jpg)
![河北省承德市第一中学2025届高一数学第二学期期末联考试题含解析_第5页](http://file4.renrendoc.com/view14/M0B/11/17/wKhkGWZ4ShuAeJnLAAIafUEoknQ4775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德市第一中学2025届高一数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里2.化简的结果是()A. B.C. D.3.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定4.在等差数列an中,a1=1,aA.13 B.16 C.32 D.355.已知,,则()A.1 B.2 C. D.36.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.7.已知等比数列满足,,则()A. B. C. D.8.如图所示,程序框图算法流程图的输出结果是A. B. C. D.9.已知,函数的最小值是()A.5 B.4 C.8 D.610.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为_______.12.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.13.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.14.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.15.在锐角△中,,,,则________16.设向量,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S18.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.19.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.20.在中,角所对的边是,若向量与共线.(1)求角的大小;(2)若,求周长的取值范围.21.已知分别是锐角三个内角的对边,且,且.(Ⅰ)求的值;(Ⅱ)求面积的最大值;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.2、D【解析】
确定角的象限,结合三角恒等式,然后确定的符号,即可得到正确选项.【详解】因为为第二象限角,所以,故选D.【点睛】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.3、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】
直接利用等差数列的前n项和公式求解.【详解】数列an的前5项和为5故选:D【点睛】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.5、A【解析】
根据向量的坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.6、B【解析】
根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.7、C【解析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.8、D【解析】
模拟程序图框的运行过程,得出当时,不再运行循环体,直接输出S值.【详解】模拟程序图框的运行过程,得S=0,n=2,n<8满足条件,进入循环:S=满足条件,进入循环:进入循环:不满足判断框的条件,进而输出s值,该程序运行后输出的是计算:.故选D.【点睛】本题考查了程序框图的应用问题,是基础题目.根据程序框图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9、D【解析】试题分析:因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.考点:重要不等式的运用.10、A【解析】
根据两直线平性的必要条件可得4-a【详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.12、﹣【解析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为﹣.考点:任意角的三角函数的定义.13、2【解析】
去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.14、【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.15、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【详解】由正弦定理,可得,所以,又由△为锐角三角形,所以.故答案为:.【点睛】本题主要考查了正弦定理得应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了计算能力,属于基础题.16、【解析】因为,所以,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=2n-12;(2)Sn【解析】
(1)设等差数列an的公差为d,根据题意求出d(2)根据等差数列的前n项和公式先求出Sn,再由an=2n-12≥0【详解】(1)因为数列an为等差数列,设公差为d由a3=-6,a6=0所以an(2)因为Sn为等差数列an的前所以Sn由an=2n-12≥0得所以当n=5或n=6时,【点睛】本题主要考查等差数列,熟记通项公式以及前n项和公式即可,属于常考题型.18、(1)见解析(2)【解析】
(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.19、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点N满足题意,则设P(x,y),,得,且,求出λ,然后求解比值.详解:(Ⅰ)依题意得,令且,得直线过定点(Ⅱ)当时,所截得弦长最短,由题知,,得,由得(Ⅲ)法一:由题知,直线的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得,说以(舍去,与重合),综上可知,在直线上存在定点,使得为常数点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系所通过的定点.20、(1)(2)【解析】
(1)由题可得,利用正弦定理边化角以及两角和的正弦公式整理可得,进而得到答案.(2)由正弦定理得,,所以周长,化简整理得,再根据角的范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精准医疗合作治疗项目合同
- 公司与个体房屋出租协议
- 山塘承包合同适用复杂情况
- 车辆矿石运输合同
- 绿色建筑技术研发合同
- 新材料生产绿色环保技术应用推广合作协议
- Module 3 Journey to space Unit 1 (教学设计)-2023-2024学年外研版英语八年级下册
- 月子中心房屋振动限制协议
- 13我能行 教学设计 -2023-2024学年道德与法治二年级下册(统编版)
- 家具厂白蚁防治施工方案
- 阴道分泌物检验
- 职业技能等级认定管理制度汇编
- C++面向对象程序设计双语教程(第3版)课件全套 ch01Introduction-ch08Templates
- 2023年vfp表单所有习题参考答案
- CEP注册eCTD格式递交的具体方法和收费程序
- 电工维修必备基础知识(图文详解)
- 全国教育科学规划课题申请书
- 《大国崛起》读书笔记思维导图PPT模板下载
- 中国慢性胆结石胆囊炎诊疗共识
- 中国人民财产保险股份有限公司雇主责任保险条款(2022年版)
- CB/T 3457-1992液压拉伸器
评论
0/150
提交评论