安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题含解析_第1页
安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题含解析_第2页
安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题含解析_第3页
安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题含解析_第4页
安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省舒城桃溪中学2025届高一数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则的最小值为()A.2 B.4 C. D.2.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.4.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.985.过点斜率为-3的直线的一般式方程为()A. B.C. D.6.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°7.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.8.如图是函数的部分图象,则下列命题中,正确的命题序号是①函数的最小正周期为②函数的振幅为③函数的一条对称轴方程为④函数的单调递增区间是⑤函数的解析式为A.③⑤ B.③④ C.④⑤ D.①③9.设集合,,则()A. B. C. D.10.执行如图所示的程序语句,输出的结果为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.(结果用反三角函数表示)12.若正四棱锥的底面边长为,侧棱长为,则该正四棱锥的体积为______.13.设是等差数列的前项和,若,则___________.14.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.15.在中,内角的对边分别为,若的周长为,面积为,,则__________.16.已知x、y、z∈R,且,则的最小值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列为递增数列,,,数列满足.(1)求数列的通项公式;(2)求数列的前项和.18.正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.19.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.(1)设总造价(元)表示为长度的函数;(2)当取何值时,总造价最低,并求出最低总造价.20.平面内给定三个向量=(3,2),=(-1,2),=(4,1).(1)求满足的实数m,n;(2)若,求实数k;21.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,,…,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计样本数据的中位数;(2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用基本不等式可得,再结合代入即可得出答案.【详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【点睛】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.2、A【解析】

在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.3、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.4、A【解析】

由在R上是奇函数且周期为4可得,即可算出答案【详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【点睛】本题考查的是函数的奇偶性和周期性,较简单.5、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.6、C【解析】

首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.7、A【解析】

将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.8、A【解析】

根据图象求出函数解析式,根据三角函数型函数的性质逐一判定.【详解】由图象可知,,最大值为,,因为图象过点,,由,即可判定错,正确,由得对称轴方程为,,故正确;由,,,函数的单调递增区间是,故错;故选:A【点睛】本题主要考查了根据图象求正弦型函数函数的解析式,及正弦型函数的性质,属于中档题.9、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.10、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.12、4.【解析】

设正四棱锥的高为PO,连结AO,在直角三角形POA中,求得高,利用体积公式,即可求解.【详解】由题意,如图所示,正四棱锥P-ABCD中,AB=,PA=设正四棱锥的高为PO,连结AO,则AO=,在直角三角形POA中,,∴.【点睛】本题主要考查了正棱锥体积的计算,其中解答中熟记正棱锥的性质,以及棱锥的体积公式,准确计算是解答的关键,着重考查了推理与运算能力.13、1.【解析】

由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.14、【解析】试题分析:由题意得,解得,故答案为.考点:分层抽样.15、3【解析】

分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.16、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用等比数列的下标性质,可以由,得到,通过解方程组,结合已知可以求出的值,这样可以求出公比,最后可以求出等比数列的通项公式,最后利用对数的运算性质可以求出数列的通项公式;(2)利用错位相消法可以求出数列的前项和.【详解】解(1)∵是等比数列∴又∵由是递增数列解得,且公比∴(2),两式相减得:∴【点睛】本题考查了等比数列下标的性质,考查了求等比数列通项公式,考查了对数运算的性质,考查了错位相消法,考查了数学运算能力.18、(1)(2)见解析【解析】

(1)因为数列的前项和满足:,所以当时,,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.19、(1),(2)当时,总造价最低为元【解析】

(1)根据题意得矩形的长为,则矩形的宽为,中间区域的长为,宽为列出函数即可.(2)根据(1)的结果利用基本不等式即可.【详解】(1)由矩形的长为,则矩形的宽为,则中间区域的长为,宽为,则定义域为则整理得,(2)当且仅当时取等号,即所以当时,总造价最低为元【点睛】本题主要考查了函数的表示方法,以及基本不等式的应用.在利用基本不等式时保证一正二定三相等,属于中等题.20、(1);(2).【解析】

(1)由及已知得,由此列方程组能求出实数;(2)由,可得,由此能求出的值.【详解】(1)由题意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【点睛】本题主要考查相等向量与共线向量的性质,属于简单题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.21、(1),中位数的估计值为75(2)【解析】

(1)根据频率和为1计算,再判断中位数落在第三组内,再计算中位数.(2)该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.排列出所有可能,计算满足条件的个数,相除得到答案.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论