版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省长春市德惠市市级名校中考三模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D.或2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直3.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,44.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=905.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为26.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有()A.3对 B.4对 C.5对 D.6对7.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c8.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足().A. B. C. D.9.如图,由四个正方体组成的几何体的左视图是()A. B. C. D.10.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.512 B.513 C.12二、填空题(共7小题,每小题3分,满分21分)11.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.12.因式分解:3x2-6xy+3y2=______.13.如图,点A、B、C在⊙O上,⊙O半径为1cm,∠ACB=30°,则的长是________.14.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为.15.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.16.已知ba=217.如果,那么______.三、解答题(共7小题,满分69分)18.(10分)当=,b=2时,求代数式的值.19.(5分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.根据以上规则回答下列问题:(1)求一次性摸出一个黄球和一个白球的概率;(2)判断该游戏是否公平?并说明理由.20.(8分)先化简,再求值:,其中a满足a2+2a﹣1=1.21.(10分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4000立方米所需时间与原来清雪3000立方米所需时间相同,求现在平均每天清雪量.22.(10分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?23.(12分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.(14分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.2、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.3、B【解析】试题分析:平均数为(a−2+b−2+c−2)=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.4、A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.5、A【解析】
根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【解析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.7、A【解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b+2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.8、D【解析】
根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.9、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.10、C【解析】
先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【详解】如图,根据勾股定理得,BC=AB∴sinA=BCAB故选C.【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、y=﹣1x+1.【解析】
由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.12、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用13、.【解析】
根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【详解】∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的长=cm.故答案为:.【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=.14、【解析】试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.试题解析:∵圆锥的底面周长为6π,∴圆锥的底面半径为6π÷2π="3,"∵圆锥的侧面积=×侧面展开图的弧长×母线长,∴母线长=2×12π÷6π="4,"∴这个圆锥的高是考点:圆锥的计算.15、m≥且m≠1.【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且然后求出两个不等式的公共部分即可.【详解】解:根据题意得m﹣1≠0且解得且m≠1.故答案为:且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16、3【解析】
依据ba=23可设a=3k,b=2【详解】∵ba∴可设a=3k,b=2k,∴aa-b故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.17、;【解析】
先对等式进行转换,再求解.【详解】∵∴3x=5x-5y∴2x=5y∴【点睛】本题考查的是分式,熟练掌握分式是解题的关键.三、解答题(共7小题,满分69分)18、,6﹣3.【解析】原式==,当a=,b=2时,原式.19、(1);(2)不公平,理由见解析.【解析】
(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.【详解】(1)画树状图如下:由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,∴一次性摸出一个黄球和一个白球的概率为;(2)不公平,由(1)种树状图可知,丽丽去的概率为,张强去的概率为=,∵,∴该游戏不公平.【点睛】本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.20、a2+2a,2【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.【详解】解:===a(a+2)=a2+2a,∵a2+2a﹣2=2,∴a2+2a=2,∴原式=2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4000立方米所需时间与原来清雪3000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得解得x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.22、(1)4%;(2)72°;(3)380人【解析】
(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).23、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论