2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷含解析_第1页
2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷含解析_第2页
2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷含解析_第3页
2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷含解析_第4页
2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省红光农场校中考数学最后冲刺模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)2.在下列四个标志中,既是中心对称又是轴对称图形的是()A. B. C. D.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°4.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣56.如图,直线AB与▱MNPQ的四边所在直线分别交于A、B、C、D,则图中的相似三角形有()A.4对B.5对C.6对D.7对7.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y28.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.59.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为()A.5 B.4 C.7 D.510.下列运算正确的是()A.6-3=3B.-32=﹣3C.a•a2=a2D.(2a3二、填空题(共7小题,每小题3分,满分21分)11.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.12.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.13.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.14.计算:的结果是_____.15.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.16.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.17.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.三、解答题(共7小题,满分69分)18.(10分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.19.(5分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.20.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.21.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;22.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.23.(12分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.24.(14分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,∴点F滚动2107次时的坐标为(2018,),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.2、C【解析】

根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【解析】

解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.4、D【解析】

判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,

当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,

故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.5、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.6、C【解析】由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.故选C.7、A【解析】

分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8、C【解析】试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:1.2(1+x)2=2.5,故选C.9、C【解析】

连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,点D为AB的中点,∴CD=AB=,S△ABC=×3×6=9,∵点D为AB的中点,∴S△ACD=S△ABC=,由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,则×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、D【解析】试题解析:A.6与3不是同类二次根式,不能合并,故该选项错误;B.(-3)2C.a⋅aD.(2a故选D.二、填空题(共7小题,每小题3分,满分21分)11、2.【解析】

先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.【详解】由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).∵线段OA的垂直平分线交OC于点B,∴OB=AB.则在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周长的值是2.12、(﹣3,2)【解析】

作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).

故答案为(-3,2).

【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.13、1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.14、【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,考点:二次根式的加减15、n1+n+1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n个为n1+n+1.考点:规律型:图形的变化类.16、①②③【解析】

根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.【详解】①正确.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:∵S△GCE=GC•CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正确.

∴正确的个数有1个:①②③.故答案为①②③【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.17、1【解析】

根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,解得m=1.故答案是:1.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.三、解答题(共7小题,满分69分)18、(1)作图见解析;(2)证明见解析;【解析】

(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【详解】解:(1)如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.19、(1)①30°②见解析(2)BD2+CE2=DE2(3)【解析】

(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根据勾股定理得,,∴DE=DF=,故答案为.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.20、(1)y=;(1)(﹣1,0)或(1,0)【解析】

(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.【详解】(1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;(1)∵A(,1),OA⊥AB,AB⊥x轴于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA•OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴点P的坐标为(﹣1,0)或(1,0).【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.21、(1)1;(2)【解析】

(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.22、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】

(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=x+1交x轴于点A(﹣4,0),∴0=×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:(0,1),(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1∴可设二次函数y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,连接BP1,将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,则OP1=11.15﹣4=7.15,故P1点坐标为(7.15,0);∴点P的坐标为:P1(1,0)和P1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.23、(1)图形见解析;(2)1;(3)1.【解析】

(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论