2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题含解析_第1页
2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题含解析_第2页
2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题含解析_第3页
2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题含解析_第4页
2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市上海外国语大学附属外国语学校高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图,则()()A.0 B. C. D.62.函数的值域为A.[1,] B.[1,2] C.[,2] D.[3.在△ABC中,已知tan=sinC,则△ABC的形状为()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形4.直线的倾斜角大小()A. B. C. D.5.“结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量.如图所示的是一位农民记录自己采摘果实的个数.在从右向左依次排列的不同绳子上打结,满四进一.根据图示可知,农民采摘的果实的个数是()A.493 B.383 C.183 D.1236.在中,,BC边上的高等于,则A. B. C. D.7.已知,则的最小值为A.3 B.4 C.5 D.68.等比数列的前n项和为,若,则等于()A.-3 B.5 C.33 D.-319.若等差数列的前10项之和大于其前21项之和,则的值()A.大于0 B.等于0 C.小于0 D.不能确定10.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.12.在等差数列中,若,则______.13.在数列an中,a1=2,a14.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557515.在棱长均为2的三棱锥中,分别为上的中点,为棱上的动点,则周长的最小值为________.16.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).18.在锐角中,角,,所对的边分别为,,,且.(1)求;(2)若的面积为8,,求的值.19.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.20.某学校高一、高二、高三的三个年级学生人数如下表

高三

高二

高一

女生

133

153

z

男生

333

453

633

按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.21.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.2、D【解析】

因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.3、C【解析】

解:因为选C4、B【解析】

化简得到,根据计算得到答案.【详解】直线,即,,,故.故选:.【点睛】本题考查了直线的倾斜角,意在考查学生的计算能力.5、C【解析】

根据题意将四进制数转化为十进制数即可.【详解】根据题干知满四进一,则表示四进制数,将四进制数转化为十进制数,得到故答案为:C.【点睛】本题以数学文化为载体,考查了进位制等基础知识,注意运用四进制转化为十进制数,考查运算能力,属于基础题.6、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.7、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】

由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出.【详解】设等比数列的公比为(公比显然不为1),则,得,因此,,故选C.【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.9、C【解析】

根据条件得到不等式,化简后可判断的情况.【详解】据题意:,则,所以,即,则:,故选C.【点睛】本题考查等差数列前项和的应用,难度较易.等差数列前项和之间的关系可以转化为与的关系.10、C【解析】

利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【点睛】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.12、【解析】

利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.13、2+【解析】

因为a1∴a∴=(=2+ln14、60【解析】

由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题15、【解析】

易证明中,且周长为,其中为定值,故只需考虑的最小值即可.【详解】由题,棱长均为2的三棱锥,故该三棱锥的四个面均为正三角形.又因为,故.故.且分别为上的中点,故.故周长为.故只需求的最小值即可.易得当时取得最小值为.故周长的最小值为.故答案为:【点睛】本题主要考查了立体几何中的距离最值问题,需要根据题意找到定量以及变量的最值情况即可.属于中档题.16、【解析】

先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)x>,是减函数.【解析】

(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.18、(1)(2)【解析】

(1)利用正弦定理,将csinA=acosC转化为,可得,从而可得角C的大小;(2)利用面积公式直接求解b即可【详解】(1)由正弦定理得,因为所以sinA>0,从而,即,又,所以;(2)由得b=8【点睛】本题考查三角函数中的恒等变换应用,考查正弦定理的应用,面积公式的应用,考查化归思想属于中档题.19、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【点睛】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.20、(1)433(2)(3)【解析】

(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13个,其中至少有1名女生的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以从中任取2人,至少有1名女生的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过3.5的数为1.4,2.6,1.2,2.7,1.3,1.3这6个数,总的个数为2,所以该数与样本平均数之差的绝对值不超过3.5的概率为.21、(Ⅰ)详见解析;(Ⅱ)4.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论