![2025届江西省南昌第二中学高一下数学期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M00/38/23/wKhkFmZ2_ymAEk5qAAIRqpTCuY8271.jpg)
![2025届江西省南昌第二中学高一下数学期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M00/38/23/wKhkFmZ2_ymAEk5qAAIRqpTCuY82712.jpg)
![2025届江西省南昌第二中学高一下数学期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M00/38/23/wKhkFmZ2_ymAEk5qAAIRqpTCuY82713.jpg)
![2025届江西省南昌第二中学高一下数学期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M00/38/23/wKhkFmZ2_ymAEk5qAAIRqpTCuY82714.jpg)
![2025届江西省南昌第二中学高一下数学期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M00/38/23/wKhkFmZ2_ymAEk5qAAIRqpTCuY82715.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省南昌第二中学高一下数学期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx2.已知,且,则的最小值为()A.8 B.12 C.16 D.203.函数的最小正周期为,则图象的一条对称轴方程是()A. B. C. D.4.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁5.菱形ABCD,E是AB边靠近A的一个三等分点,DE=4,则菱形ABCD面积最大值为()A.36 B.18 C.12 D.96.若是的重心,,,分别是角的对边,若,则角()A. B. C. D.7.如图,在中,,是边上的高,平面,则图中直角三角形的个数是()A. B. C. D.8.在三棱锥中,面,则三棱锥的外接球表面积是()A. B. C. D.9.设点是函数图象士的任意一点,点满足,则的最小值为()A. B. C. D.10.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为.12.已知x、y、z∈R,且,则的最小值为.13.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.14.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________15.函数的最小正周期为___________.16.在等差数列中,已知,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.18.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.19.已知,,求证:(1);(2).20.某厂每年生产某种产品万件,其成本包含固定成本和浮动成本两部分.已知每年固定成本为20万元,浮动成本,.若每万件该产品销售价格为40万元,且每年该产品产销平衡.(1)设年利润为(万元),试求与的关系式;(2)年产量为多少万件时,该厂所获利润最大?并求出最大利润.21.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。2、C【解析】
由题意可得,则,展开后利用基本不等式,即可求出结果.【详解】因为,且,即为,则,当且仅当,即取得等号,则的最小值为.故选:C.【点睛】本题考查基本不等式的应用,注意等号成立的条件,考查运算能力,属于中档题.3、D【解析】
先根据函数的周期求出的值,求出函数的对称轴方程,然后利用赋值法可得出函数图象的一条对称轴方程.【详解】由于函数的最小正周期为,则,,令,解得.当时,函数图象的一条对称轴方程为.故选:D.【点睛】本题考查利用正弦型函数的周期求参数,同时也考查了正弦型函数图象对称轴方程的计算,解题时要结合正弦函数的基本性质来进行求解,考查运算求解能力,属于中等题.4、B【解析】
九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.5、B【解析】
设出菱形的边长,在三角形ADE中,用余弦定理表示出cosA【详解】设菱形的边长为3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故选:B【点睛】本小题主要考查余弦定理解三角形,考查同角三角函数的基本关系式,考查菱形的面积公式,考查二次函数最值的求法,属于中档题.6、D【解析】试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量基本定理;2、余弦定理的应用.7、C【解析】
根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.综上可知:直角三角形的个数是个,故选C.【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.8、D【解析】
首先计算BD长为2,判断三角形BCD为直角三角形,将三棱锥还原为长方体,根据体对角线等于直径,计算得到答案.【详解】三棱锥中,面中:在中:即ABCD四点都在对应长方体上:体对角线为AD答案选D【点睛】本题考查了三棱锥的外接球表面积,将三棱锥放在对应的长方体里面是解题的关键.9、B【解析】
函数表示圆位于x轴下面的部分。利用点到直线的距离公式,求出最小值。【详解】函数化简得。圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题。10、B【解析】
把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.12、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式13、【解析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.14、【解析】
由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.15、【解析】
先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期公式可得函数的最小正周期.【详解】解:由题意可得:,可得函数的最小正周期为:,故答案为:.【点睛】本题主要考查二倍角的化简求值和三角函数周期性的求法,属于基础知识的考查.16、-16【解析】
设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为【点睛】本题考查了等差数列通项公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.18、(1)A=;(2).【解析】
(1)由正弦定理将角关系转化为变关系,再利用余弦定理得到答案.(2)利用余弦定理得到,代入面积公式得到答案.【详解】解:(1)因为所以由正弦定理可得整理可得左右同除以得到,即A=(2)由余弦定理,得,故,所以三角形的面积.【点睛】本题考查了是正弦定理,余弦定理,面积公式,意在考查学生的计算能力.19、(1)证明见详解;(2)证明见详解.【解析】
(1)利用不等式性质,得,再证,最后证明;(2)先证,再证明.【详解】证明:(1)因为,所以,于是,即,由,得.(2)因为,所,又因为,所以,所以.【点睛】本题考查利用不等式性质证明不等式,需要熟练掌握不等式的性质,属综合基础题.20、(1);(2)产量(万件)时,该厂所获利润最大为100万元.【解析】
(1)由销售收入减去成本可得利润;(2)分段求出的最大值,然后比较可得.【详解】(1)由题意;即;(2)时,,时,,当时,在是递增,在上递减,时,综上,产量(万件)时,该厂所获利润最大为100万元.【点睛】本题考查函数模型的应用,根据所给函数模型求出函数解析式,然后由分段函数性质分段求出最大值,比较后得出函数最大值.考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 变更更正户口申请书
- 2024-2025学年高中物理课时分层作业5电势差含解析新人教版选修3-1
- 2024-2025学年高中地理第4单元从人地关系看资源与环境第2节自然灾害与人类-以洪灾为例学案鲁教版必修1
- 涂装生产线教育中的物流技术培训与实践案例分析
- 转走读申请书
- 入团申请书的照片
- 2025年度家居用品居间代理销售服务合同
- 小学复读申请书
- 二零二五年度项目负责人聘用及项目进度管理协议书3篇
- 劳保用品申请书范文
- 招商银行房地产贷款压力测试
- 公文与公文写作课件
- 车削成形面和表面修饰加工课件
- 基于振动信号的齿轮故障诊断方法研究
- 义务教育物理课程标准(2022年版word版)
- 医疗器械分类目录2002版
- DB11_T1713-2020 城市综合管廊工程资料管理规程
- 气管套管滑脱急救知识分享
- 特种设备自检自查表
- 省政府审批单独选址项目用地市级审查报告文本格式
- 往复式压缩机安装方案
评论
0/150
提交评论