




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市高新第一中学国际部高一下数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.2.在直角梯形中,,为的中点,若,则A.1 B. C. D.3.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.4.南北朝数学家祖暅在推导球的体积公式时构造了一个中间空心的几何体,经后继学者改进后这个中间空心的几何体其三视图如图所示,下列那个值最接近该几何体的体积()A.8 B.12 C.16 D.245.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.56.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.7.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.68.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-9.电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性()A.都相等,且为 B.都相等,且为C.均不相等 D.不全相等10.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知3a=2,则32a=____,log318﹣a=_____12.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.13.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).14.已知数列的前项和为,,,则__________.15.实数2和8的等比中项是__________.16.___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm),将数据分组如下:分组
频数
频率
[1.95,1.97)
13
[1.97,1.99)
23
[1.99,2.31)
53
[2.31,2.33]
23
合计
133
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33mm,试求这批球的直径误差不超过3.33mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).18.已知函数。(1)若,求不等式的解集;(2)若,且,求的最小值。19.大豆,古称菽,原产中国,在中国已有五千年栽培历史.2019年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作,其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系.为此科研人员分别记录了7天中每天50粒大豆的发芽数得如下数据表格:日期4月3日4月4日4月5日4月6日4月7日4月8日4月9日温差(℃)89101211813发芽数(粒)21252632272033科研人员确定研究方案是:从7组数据中选5组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验.(1)若选取的是4月4日至4月8日五天数据,据此求关于的线性回归方程;(2)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(1)中回归方程是否可靠?注:.参考数值:,.20.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.21.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】所求的全面积之比为:,故选A.2、B【解析】
连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.3、A【解析】
由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【点睛】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.4、C【解析】
由三视图确定此几何体的结构,圆柱的体积减去同底同高的圆锥的体积即为所求.【详解】该几何体是一个圆柱挖掉一个同底同高的圆锥,圆柱底为2,高为2,所求体积为,所以C选项最接近该几何体的体积.故选:C【点睛】本题考查由三视图确定几何体的结构及求其体积,属于基础题.5、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.6、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.8、D【解析】
利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.9、A【解析】
根据随机抽样等可能抽取的性质即可求解.【详解】由随机抽样等可能抽取,可知每个个体被抽取的可能性相等,故抽取的概率为.故选:A【点睛】本题考查了随机抽样的特点,属于基础题.10、B【解析】
分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。二、填空题:本大题共6小题,每小题5分,共30分。11、42.【解析】
由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.12、①②④【解析】
将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.13、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.14、【解析】
先利用时,求出的值,再令,由得出,两式相减可求出数列的通项公式,再将的表达式代入,可得出.【详解】当时,则有,;当时,由得出,上述两式相减得,,得且,所以,数列是以为首项,以为公比的等比数列,则,,那么,因此,,故答案为.【点睛】本题考查等比数列前项和与通项之间的关系,同时也考查了等比数列求和,一般在涉及与的递推关系求通项时,常用作差法来求解,考查计算能力,属于中等题.15、【解析】所求的等比中项为:.16、【解析】
先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)3.9;(Ⅲ)【解析】试题分析:(Ⅰ)根据公式:频率=频数÷样本容量可补充完成频率分布表,然后作出频率分布直方图;(Ⅱ)直径误差不超过3.33mm的频率有3.53,3.53,3.53,所以这批球的直径误差不超过3.33mm的概率3.53+3.53+3.53=3.9;(Ⅲ)由平均值公式可求得试题解析:(Ⅰ)分组
频数
频率
[4.95,4.97)
43
3.43
[4.97,4.99)
53
3.53
[4.99,5.34)
53
3.53
[5.34,5.33]
53
3.53
合计
433
4
(Ⅱ)设误差不超过3.33的事件为,则.(Ⅲ)考点:4.频率分布直方图;5.求数值的平均值18、(1)答案不唯一,具体见解析(2)【解析】
(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为。【点睛】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.19、(1);(2)(1)中回归方程是可靠的.【解析】
(1)运用已知题中所给的数值,结合所给的计算公式、数表提供的数据求得与的值,进而写出线线回归方程;(2)在(1)中求得的线性回归方程中,分别取x=8与13求得y值,进一步求得残差得结论.【详解】因为,.,所以,.因此关于的线性回归方程;(2)取x=8,得,此时;取x=13,得,此时∴(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025供暖设备供应及安装合同
- 生产计划中的信息化建设路径
- it服务外包合同标准文本
- 公司职股合同标准文本
- 养猫设备出售合同标准文本
- 2025【合同范本】网络安全设备采购合同范本
- 创意团队建设的实施方案计划
- 关于软件销售合同标准文本
- 远程工作的最佳实践计划
- 仪器检定合同标准文本
- 案例:收球器盲板伤人事故
- 《员工思想培训》课件
- 网络主题 大锁孙天宇小品《时间都去哪儿了》台词
- 2022-2023年棉花行业洞察报告PPT
- 精神科症状学演示课件
- 文学类文本聂志红《在那桃花盛开的地方》阅读练习与答案
- DB13T 5080-2019 SBS改性沥青生产过程动态质量监控规范
- 义务教育物理课程标准(2022年版word版)
- 《CSS样式表的使用》教学设计
- 外环长安大道、东方大道段天然气管道工程管道试压吹扫方案资料(共13页)
- 中国花鸟画简史-共60页PPT课件
评论
0/150
提交评论