




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市思南县思南中学2025届高一数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.2.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.43.设,若关于的不等式在区间上有解,则()A. B. C. D.4.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法5.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α;②α//β,m⊂α,n⊂β⇒m//n;③m//n,m//α⇒n//α;④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①④B.②④C.①③D.②③6.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5127.执行如图所示的程序框图,若输入的,则输出A. B. C. D.8.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°9.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B. C. D.10.圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的三边分别是,且面积,则角__________.12.若直线:与直线的交点位于第一象限,则直线的倾斜角的取值范围是___________.13.若点为圆的弦的中点,则弦所在的直线的方程为___________.14.设函数的部分图象如图所示,则的表达式______.15.设为等差数列的前n项和,,则________.16.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正项数列的前项和为,且.(Ⅰ)试求数列的通项公式;(Ⅱ)设,求的前项和为.(Ⅲ)在(Ⅱ)的条件下,若对一切恒成立,求实数的取值范围.18.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.19.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.20.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.21.已知向量,的夹角为120°,且||=2,||=3,设32,2.(Ⅰ)若⊥,求实数k的值;(Ⅱ)当k=0时,求与的夹角θ的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【点睛】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.2、A【解析】
根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.3、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.4、B【解析】①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B5、A【解析】依据线面垂直的判定定理可知命题①是正确的;对于命题②,直线m,n还有可能是异面,因此不正确;对于命题③,还有可能直线n⊂α,因此③命题不正确;依据线面垂直的判定定理可知命题④是正确的,故应选答案A.6、A【解析】
根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。7、B【解析】
首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:,即.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.8、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.9、C【解析】试题分析:设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型10、B【解析】
圆的标准方程为,圆心,故排除、,代入点,只有项经过此点,也可以设出要求的圆的方程:,再代入点,可以求得圆的半径为.故选.点睛:这个题目主要考查圆的标准方程,因为这是一道选择题,故根据与条件中的圆的方程可以得到圆心坐标,进而可以排除几个选项,如果正规方法,就可以按照已知圆心,写出标准方程,代入已知点求出标准方程即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.12、【解析】若直线与直线的交点位于第一象限,如图所示:则两直线的交点应在线段上(不包含点),当交点为时,直线的倾斜角为,当交点为时,斜率,直线的倾斜角为∴直线的倾斜角的取值范围是.故答案为13、;【解析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).14、【解析】
根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.15、54.【解析】
设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.16、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)将所给条件式子两边同时平方,利用递推法可得的表达式,由两式相减,变形即可证明数列为等差数列,进而结合首项与公差求得的通项公式.(Ⅱ)由(Ⅰ)中可求得.将与代入即可求得数列的通项公式,利用裂项法即可求得前项和.(Ⅲ)先求得的取值范围,结合不等式,即可求得的取值范围.【详解】(Ⅰ)因为正项数列的前项和为,且化简可得由递推公式可得两式相减可得,变形可得即,由正项等比数列可得所以而当时,解得所以数列是以为首项,以为公差的等差数列因而(Ⅱ)由(Ⅰ)可知则代入中可得所以(Ⅲ)由(Ⅱ)可知则,所以数列为单调递增数列,则且当时,,即所以因为对一切的恒成立则满足,解不等式组可得即实数的取值范围为【点睛】本题考查了等差数列通项公式与求和公式的应用,裂项求和法的应用,数列的单调性与不等式关系,综合性强,属于中档题.18、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准方程.讨论斜率是否存在两种情况.当斜率不存在时,可直接求得直线方程;当斜率存在时,由点斜式设出直线方程,结合点到直线的距离即可求得斜率,即可得直线方程.【详解】(Ⅰ)若方程表示圆则解得故实数的取值范围为(Ⅱ)若,圆:①当过点的直线斜率不存在时,直线方程为圆心到直线的距离等于半径,此时直线与相切②当过点的直线斜率存在时,不妨设斜率为则切线方程为,即由圆心到直线的距离等于半径可知,解得,即切线方程为综上所述,切线方程为或【点睛】本题考查了直线与圆的位置关系的应用,圆的一般方程与标准方程的关系和转化,属于基础题.19、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解析】
(Ⅰ)转化为证明;(Ⅱ)转化为证明,;(Ⅲ)根据线面平行的性质定理.【详解】(Ⅰ)因为四边形为正方形,所以,由于平面,平面,所以平面.(Ⅱ)因为四边形为正方形,所以.平面平面,平面平面,所以平面.所以.取中点,连接.由,,,可得四边形为正方形.所以.所以.所以.因为,所以平面.(Ⅲ)存在,当为的中点时,平面,此时.证明如下:连接交于点,由于四边形为正方形,所以是的中点,同时也是的中点.因为,又四边形为正方形,所以,连接,所以四边形为平行四边形.所以.又因为平面,平面,所以平面.【点睛】本题考查空间线面的关系.线面关系的证明要紧扣判定定理,转化为线线关系的证明.20、(1),;(2)真命题,证明见解析;(3).【解析】
(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证明如下:①当时,则,,,此时,当时,;②当时,设,则,,,此时,当时,.综上所述,命题为真命题;(3)先证明:“”是“存在,当时,恒有成立”的充要条件.假设存在,使得“存在,当时,恒有成立”.则数列的前项为,,,,,,后面的项顺次为,,,,故对任意的,,对任意的,取,其中表示不超过的最大整数,则,令,则,此时,有,这与矛盾,故若存在,当时,恒有成立,必有;从而得证.另外:当时,数列为,故,则.【点睛】本题考查数列知识的应用,涉及到命题真假的判断,同时也考查了数列新定义问题,解题时要充分从题中数列的定义出发,充
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025供暖设备供应及安装合同
- 生产计划中的信息化建设路径
- it服务外包合同标准文本
- 公司职股合同标准文本
- 养猫设备出售合同标准文本
- 2025【合同范本】网络安全设备采购合同范本
- 创意团队建设的实施方案计划
- 关于软件销售合同标准文本
- 远程工作的最佳实践计划
- 仪器检定合同标准文本
- 案例:收球器盲板伤人事故
- 《员工思想培训》课件
- 网络主题 大锁孙天宇小品《时间都去哪儿了》台词
- 2022-2023年棉花行业洞察报告PPT
- 精神科症状学演示课件
- 文学类文本聂志红《在那桃花盛开的地方》阅读练习与答案
- DB13T 5080-2019 SBS改性沥青生产过程动态质量监控规范
- 义务教育物理课程标准(2022年版word版)
- 《CSS样式表的使用》教学设计
- 外环长安大道、东方大道段天然气管道工程管道试压吹扫方案资料(共13页)
- 中国花鸟画简史-共60页PPT课件
评论
0/150
提交评论