福建省莆田八中2025届高一下数学期末学业质量监测试题含解析_第1页
福建省莆田八中2025届高一下数学期末学业质量监测试题含解析_第2页
福建省莆田八中2025届高一下数学期末学业质量监测试题含解析_第3页
福建省莆田八中2025届高一下数学期末学业质量监测试题含解析_第4页
福建省莆田八中2025届高一下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田八中2025届高一下数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若tan()=2,则sin2α=()A. B. C. D.2.在等比数列中,,,则()A. B.C. D.3.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.4.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定5.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度6.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥7.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°8.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知分别为的三边长,且,则=()A. B. C. D.310.若则一定有()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.12.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.13.不等式x(2x﹣1)<0的解集是_____.14.在等比数列中,若,则等于__________.15.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.16.设为等差数列,若,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.18.已知定义域为的函数在上有最大值1,设.(1)求的值;(2)若不等式在上恒成立,求实数的取值范围;(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).19.设角,,其中:(1)若,求角的值;(2)求的值.20.已知数列的前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.21.如图,在四棱锥中,平面,底面是菱形,连,交于点.(Ⅰ)若点是侧棱的中点,连,求证:平面;(Ⅱ)求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由两角差的正切得tan,化sin2α为tan的齐次式求解【详解】tan()=2,则则sin2α=故选:B【点睛】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题2、B【解析】

设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.3、C【解析】

数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化简解出即可得出.【详解】数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n1+n.∴a<1.故选C.【点睛】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.4、C【解析】

先求均值,再根据标准差公式求标准差,最后比较大小.【详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【点睛】本题考查标准差,考查基本求解能力.5、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.6、D【解析】

当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D7、B【解析】

连接,可证是异面直线与所成的角或其补角,求出此角即可.【详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【点睛】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.8、C【解析】

根据,,可判断所在象限.【详解】,在三四象限.,在一三象限,故在第三象限答案为C【点睛】本题考查了三角函数在每个象限的正负,属于基础题型.9、B【解析】

由已知直接利用正弦定理求解.【详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【点睛】本题考查三角形的解法,考查正弦定理的应用,属于基础题.10、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).12、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.13、【解析】

求出不等式对应方程的实数根,即可写出不等式的解集,得到答案.【详解】由不等式对应方程的实数根为0和,所以该不等式的解集是.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.15、【解析】

以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.16、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.【详解】解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,所以该区中随机抽取一人,估计其年龄不小于60的概率为.(Ⅱ)年龄在的累计频率为,,所以估计中位数为.(Ⅲ)平均年龄为【点睛】本小题主要考查频率分布直方图的识别与应用,考查频率分布直方图估计中位数和平均数,考查运算求解能力,属于中档题.18、(1)0;(2);(3)【解析】

(1)结合二次函数的性质可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用换元q=|ex﹣1|,结合二次函数的实根分布即可求解.【详解】(1)因为在上是增函数,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等价于在上恒成立令,因为,所以则有在恒成立令,,则所以,即,所以实数的取值范围为.(3)因为令,由题意可知令,则函数有三个不同的零点等价于在有两个零点,当,此时方程,此时关于方程有三个零点,符合题意;当记为,,且,,所以,解得综上实数的取值范围.【点睛】本题主要考查了二次函数的单调性的应用,不等式中的恒成立问题与最值的相互转化,二次函数的实根分布问题等知识的综合应用,是中档题19、(1);(2).【解析】

(1)由,可得出,进而得出,结合可求出角的值,可求出的值,再利用反余弦的定义即可求出角的值;(2)由题意可得出,,可计算出,根据反三角的定义得出,,利用两角和的正弦公式求出的值,即可得出角的值.【详解】(1),,,,则,可得,所以,可得.因此,;(2),则,所以,,由(1)知,所以,,,,,,由同角三角函数的基本关系可得,,由两角和的正弦公式可得,因此,.【点睛】本题考查反三角函数的定义,同时也考查了利用两角和的正弦公式的应用,在求角时,不要忽略了求角的取值范围,考查计算能力,属于中等题.20、(1)(2)(3)见解析【解析】

(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题21、(Ⅰ)见证明;(Ⅱ)见证明【解析】

(Ⅰ)由为菱形,得为中点,进而得到,利用线面平行的判定定理,即可求解;(Ⅱ)先利用线面垂直的判定定理,证得平面,进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论