版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省三亚市达标名校数学高一下期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在公比q为整数的等比数列{an}中,Sn是数列{an}A.q=2 B.数列SnC.S8=510 D.数列2.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.3.若角的终边过点,则()A. B. C. D.4.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定5.如图,A,B是半径为1的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为.图中△PAB的面积的最大值为()A.+sin2 B.sin+sin2C.+sin D.+cos6.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.19007.已知向量,且,则().A. B.C. D.8.数列,通项公式为,若此数列为递增数列,则的取值范围是A. B. C. D.9.已知,若,则等于()A. B.1 C.2 D.10.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10 B.11 C.12 D.13二、填空题:本大题共6小题,每小题5分,共30分。11.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______12.已知是等差数列,,,则的前n项和______.13.在中,是斜边的中点,,,平面,且,则_____.14.已知数列满足:(),设的前项和为,则______;15.若无穷等比数列的各项和等于,则的取值范围是_____.16.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若不等式的解集为,求的值;(2)解不等式.18.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.19.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.20.已知在直角三角形ABC中,,(如右图所示)(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.21.等差数列,等比数列,,,如果,(1)求的通项公式(2),求的最大项的值(3)将化简,表示为关于的函数解析式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由等比数列的公比q为整数,得到a2<a3,再由等比数列的性质得出a1a4=a【详解】由等比数列的公比q为整数,得到a2由等比数列的性质得出a1a4=a2aSn=a11-qnS8=2所以,数列lgan是以故选:D.【点睛】本题考查等比数列基本性质的应用,考查等比数列求和以及等比数列的定义,充分利用等比数列下标相关的性质,将项的积进行转化,能起到简化计算的作用,考查计算能力,属于中等题。2、B【解析】
根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.3、D【解析】
解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【点睛】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.4、C【解析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.5、B【解析】
由正弦定理可得,,则,,当点在的中垂线上时,取得最大值,此时的面积最大,求解即可.【详解】在中,由正弦定理可得,,则.,当点在的中垂线上时,取得最大值,此时的面积最大.取的中点,过点作的垂线,交圆于点,取圆心为,则(为锐角),.所以的面积最大为.故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.6、B【解析】
根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7、D【解析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.8、B【解析】因为的对称轴为,因为此数列为递增数列,所以.9、A【解析】
首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.10、C【解析】
先由男女生总数以及抽取的人数确定抽样比,由男生总人数乘以抽样比即可得出结果.【详解】用分层抽样的方法从校乐团中抽取人,所得抽样比为,因此抽取到的男同学人数为人.故选C【点睛】本题主要考查分层抽样,熟记概念即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、1.1【解析】
先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.12、【解析】
由,可求得公差d,进而可求得本题答案.【详解】设等差数列的公差为d,由题,有,解得,所以.故答案为:【点睛】本题主要考查等差数列的通项公式及求和公式,属基础题.13、【解析】
由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【详解】如图,EC⊥面ABC,而CD⊂面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED1.故答案为1.【点睛】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.14、130【解析】
先利用递推公式计算出的通项公式,然后利用错位相减法可求得的表达式,即可完成的求解.【详解】因为,所以,所以,所以,又因为,不符合时的通项公式,所以,当时,,所以,所以,所以,所以.故答案为:.【点睛】本题考查根据数列的递推公式求通项公式以及错位相减法的使用,难度一般.利用递推公式求解数列的通项公式时,若出现了的形式,一定要注意标注,同时要验证是否满足的情况,这决定了通项公式是否需要分段去写.15、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.16、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)时,解集为,时,解集为,时解集为.【解析】
(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【点睛】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.18、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值;(Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)(2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.20、(Ⅰ)几何体为以为半径,高的圆锥,(Ⅱ)【解析】
(Ⅰ)若以为轴,直角三角形旋转一周,形成的几何体为以为半径,高的圆锥,由圆锥的表面积公式,即可求出结果.(Ⅱ)利用侧面展开图,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,代入数值,即可求出结果.【详解】解:(Ⅰ)在直角三角形ABC中,由即,得,若以为轴旋转一周,形成的几何体为以为半径,高的圆锥,则,其表面积为.(Ⅱ)由问题(Ⅰ)的圆锥,要使蚂蚁爬行的最短距离,则沿点B的母线把圆锥侧面展开为平面图形(如图)最短距离就是点B到点的距离,,在中,由余弦定理得:【点睛】本题考查了圆锥的表面积以及侧面展开图的应用,考查了学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微电影制作责任协议
- 二零二五年度LED灯具安装与照明节能评估合同3篇
- 二零二五年干股合作协议书干股投资知识产权保护协议
- 主题公园建设合同模板
- 《线性回归与协方差》课件
- 2024年玻璃门窗加工与安装协议
- 2025版旧手机维修及买卖与回收服务合同3篇
- 太阳能光伏施工合同样本
- 国际展览中心建设民建施工合同
- 2024年水泥批量供应商务协议文件版B版
- 三级配电箱巡检记录
- 《全国统一安装工程预算定额》工程量计算规则
- GA/T 798-2008排油烟气防火止回阀
- GA/T 1163-2014人类DNA荧光标记STR分型结果的分析及应用
- 《中国红》诗歌朗诵
- 光伏工程启动验收鉴定书
- 承揽合同纠纷答辩状范例2篇
- 管线管廊布置设计规范
- 招聘与录用选择题
- 《工资、薪金的个人所得税的计算》教学设计
- 周视瞄准镜的初步设计-北京理工大学-光电学院小学期作业
评论
0/150
提交评论