专题13新定义材料阅读类创新题(江苏真题15道模拟30道)-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)_第1页
专题13新定义材料阅读类创新题(江苏真题15道模拟30道)-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)_第2页
专题13新定义材料阅读类创新题(江苏真题15道模拟30道)-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)_第3页
专题13新定义材料阅读类创新题(江苏真题15道模拟30道)-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)_第4页
专题13新定义材料阅读类创新题(江苏真题15道模拟30道)-2023年中考数学大题高分秘籍【江苏专用】(原卷版+解析)_第5页
已阅读5页,还剩155页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学大题高分秘籍(江苏专用)专题13新定义材料阅读类创新题(江苏真题15道模拟30道)【真题再现】直面中考真题,实战培优提升一、解答题1.(2023·江苏南通·统考中考真题)定义:函数图像上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图像的“n阶方点”.例如,点13,13是函数y=x图像的“12(1)在①−2,−12;②(−1,−1);③(1,1)三点中,是反比例函数(2)若y关于x的一次函数y=ax−3a+1图像的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=−(x−n)2−2n+1图像的“n2.(2023·江苏南通·统考中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=1(1)分别判断函数y=x+2,y=x(2)设函数y=3x(x>0),y=−x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC(3)若函数y=x2−2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W23.(2023·江苏盐城·统考中考真题)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′.经过进一步探究,小明发现,当上述点P在某函数图像上运动时,点P′也随之运动,并且点试根据下列各题中所给的定点A的坐标和角度α的大小来解决相关问题.

【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图像上的动点,已知该一次函数的图像经过点P1(1)点P1旋转后,得到的点P(2)若点P′的运动轨迹经过点P【深入感悟】(3)如图2,设A(0,0),α=45°,点P反比例函数y=−1x(x<0)的图像上的动点,过点P′作二、四象限角平分线的垂线,垂足为【灵活运用】(4)如图3,设A(1,−3),α=60°,点P是二次函数y=12x2+24.(2023·江苏常州·统考中考真题)(现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC(1)沿AC、BC剪下△ABC,则△ABC是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm5.(2023·江苏常州·统考中考真题)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=42,OA=5,BC=12,连接AC,求AC(3)在四边形EFGH中,EH//FG.若边FG上的点O是四边形EFGH的“等形点”,求OFOG6.(2023·江苏南京·统考中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.7.(2023·江苏苏州·统考中考真题)如图①,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为ℎ甲,容器乙的水位高度记为ℎ乙,设ℎ乙−ℎ甲=ℎ①求a的值;②求图③中线段PN所在直线的解析式.8.(2023·江苏扬州·统考中考真题)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为___________;②△ABC面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠B(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=①线段PB长的最小值为_______;②若S△PCD=29.(2023·江苏连云港·统考中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图1,求CF的长;(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.10.(2023·江苏盐城·统考中考真题)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于1中的木门,当模具换成边长为303厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②11.(2023·江苏常州·中考真题)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ⋅PH的值称为⊙I关于直线a的“特征数”.

(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点_________(填“A”、“B”、“C”或“D”),⊙O关于直线m的“特征数”为_________;②若直线n的函数表达式为y=3x+4,求⊙O关于直线(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,2为半径作⊙F.若⊙F与直线l相离,点N(−1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是45,求直线l12.(2023·江苏南京·统考中考真题)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A′,线A′B与直线l的交点C的位置即为所求,即在点C处建气站,所得路线ACB是最短的,为了让明点C的位置即为所求,不妨在l直线上另外任取一点C′,连接AC(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),①生市保护区是正方形区域,位置如图③所示②生态保护区是圆形区域,位置如图④所示.13.(2023·江苏盐城·统考中考真题)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(1)在Rt△ABC中,∠C=90°,AB=22AC2.82.72.62.321.50.4BC0.40.81.21.622.42.8AC+BC3.23.53.83.943.93.2(2)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析;①设BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点;②连线;观察思考(3)结合表中的数据以及所面的图像,猜想.当x=时,y最大;(4)进一步C猜想:若Rt△MBC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=时,AC+BC最大.推理证明(5)对(4)中的猜想进行证明.问题1.在图①中完善2的描点过程,并依次连线;问题2.补全观察思考中的两个猜想:3_______4_______问题3.证明上述5中的猜想:问题4.图②中折线B−E−F−G−A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米,∠E=∠F=∠G=90∘,平行光线从AB区域射入,∠BNE=60∘14.(2023·江苏苏州·统考中考真题)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=25cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),ΔAPM的面积为S(cm²),S与(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为vcm/s.已知两动点M、N经过时间xs在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时ΔAPM与ΔDPN的面积为①求动点N运动速度vcm/s②试探究S1⋅S2是否存在最大值.若存在,求出

15.(2023·江苏南京·统考中考真题)【概念认知】:城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=【数学理解】:(1)①已知点A(﹣2,1),则d(O,A)=;②函数y=−2x+4(0≤x≤2)的图像如图①所示,B是图像上一点,d(O,B)=3,则点B的坐标是.(2)函数y=4(3)函数y=x【问题解决】:(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【专项突破】深挖考点考向,揭示内涵实质一.解答题(共30小题)1.(2023•滨海县模拟)如图1,直线l:y=kx+b(k<0,b>0)与x、y轴分别相交于A、B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线W叫做直线l的关联抛物线,而直线l叫做抛物线W的关联直线.(1)已知直线l1:y=﹣3x+3,求直线l1的关联抛物线W1的表达式;(2)若抛物线,求它的关联直线l2的表达式;(3)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若,求直线l3的关联抛物线W3的表达式;(4)在(3)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1﹣y2|≤4,请直接写出m的取值范围.2.(2023•淮安二模)我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(﹣1,1),则P为二次函数y=x2图象上的“互反点”.(1)分别判断y=﹣x+3、y=x2+x的图象上是否存在“互反点”?如果存在,求出“互反点”的坐标;如果不存在,说明理由.(2)如图①,设函数y=(x<0),y=x+b的图象上的“互反点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为5时,求b的值;(3)如图②,Q(m,0)为x轴上的动点,过Q作直线l⊥x轴,若函数y=﹣x2+2(x≥m)的图象记为W1,将W1沿直线l翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有2个“互反点”时,直接写出m的取值范围.3.(2023•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.4.(2023•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.5.(2023•如东县一模)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.6.(2023•如皋市一模)定义:在平面直角坐标系中,点M(x1,y1),N(x2,y2),若x1﹣x2=y1﹣y2,则称点M,N互为正等距点,|y1﹣y2|叫做点M,N的正等距.特别地,一个点与它本身互为正等距点,且正等距为0.例如,点(﹣2,3),(1,6)互为正等距点,两点的正等距为3.在平面直角坐标系中,点A的坐标为(2,1).(1)判断反比例函数y=(x<0)的图象上是否存在点A的正等距点?若存在,求出该点的坐标;若不存在,请说明理由;(2)若与点A的正等距等于4的点恰好落在直线y=kx+2上,求k的值;(3)若抛物线y=﹣(x﹣a)(x﹣a﹣6)上存在点A的正等距点B,且点A,B的正等距不超过1,请直接写出a的取值范围.7.(2023•常州模拟)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤2)中是有上界函数的为(只填序号即可),其上确界为;(2)如果函数y=﹣x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2﹣2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.8.(2023•梁溪区校级二模)在抛物线y=ax2+bx+c(a≠0)中,规定:(1)符号[a,b,c]称为该抛物线的“抛物线系数”;(2)如果一条抛物线与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.完成下列问题:(1)若一条抛物线的系数是[﹣1,0,m+1],则此抛物线的函数表达式为(含参数m),当m满足时,此抛物线没有“抛物线三角形”;(2)若抛物线y=x2+bx的“抛物线三角形”是等腰直角三角形,求出该抛物线的“抛物线系数”;(3)若一条抛物线的系数是[a,﹣4a,c](a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴负半轴交于点C,顶点为D,已知S△ABD:S四边形ABCD=1:4,且tan∠ACB=.求该抛物线的函数关系式.9.(2023•盐都区二模)将抛物线y=ax2的图象(如图1)绕原点顺时针旋转90度后可得新的抛物线图象(如图2),记为C:y2=x.【概念与理解】将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图象,记为:C1:;C2:.【猜想与证明】在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,=;当x=2时,=;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.【探究与应用】(3)利用上面的结论,可得△AOB与△COD面积比为;(4)若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;【联想与拓展】(5)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是.10.(2023•广陵区校级三模)【探究】如图1,点N(m,n)是抛物线上的任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点N作直线NH⊥l,垂足为H.①计算:m=0时,NH=;m=4时,NO=.②猜想:m取任意值时,NONH(填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F和一条直线l(点F不在直线l上)距离相等的点的集合叫做抛物线,其中点F叫做抛物线的“焦点”,直线l叫做抛物线的“准线”.如图1中的点O即为抛物线y1的“焦点”,直线l:y=﹣2即为抛物线y1的“准线”.可以发现“焦点”F在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F(﹣4,﹣1)、“准线”为l的抛物线与y轴交于点N(0,2),点M为直线FN与抛物线的另一交点.MQ⊥l于点Q,直线l交y轴于点H.①直接写出抛物线y2的“准线”l:;②计算求值:=;(2)如图3,在平面直角坐标系xOy中,以原点O为圆心,半径为1的⊙O与x轴分别交于A、B两点(A在B的左侧),直线与⊙O只有一个公共点F,求以F为“焦点”、x轴为“准线”的抛物线的表达式.11.(2023•武进区二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.12.(2023•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.13.(2023•姑苏区一模)定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH=6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.14.(2023•新吴区二模)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2,则DR的最小值=.15.(2023•通州区一模)平面直角坐标系xOy中,对于点P(x,y),给出如下定义:若x,y满足|xy|=2|x|+2|y|,且xy≠0,则称点P为平衡点.例如,点是平衡点.(1)P1(2,2)和P2(,﹣5)两点中,点是平衡点;(2)若平衡点P在一次函数的图象上,求点P的坐标;(3)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,OC=6.反比例函数的图象交边BC于点D,交边AB于点E若D,E两点均为平衡点.求∠ODE的正切值.16.(2023•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC=48,求△ABC的周长.17.(2023•广陵区一模)学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题:(1)sad60°的值为.A.B.1C.D.2(2)对于0°<A<180°,∠A的正对值sadA的取值范围是.(3)已知sinA=,其中∠A为锐角,试求sadA的值.18.(2023•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,),Q3(﹣2,),Q4(,﹣2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.19.(2023•钟楼区校级模拟)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(﹣1,0),C(0,﹣1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).已知点E(3,0).①直接写出d(点E)的值;②过点E画直线y=kx﹣3k与y轴交于点F,当d(线段EF)取最小值时,求k的取值范围;③设T是直线y=﹣x+3上的一点,以T为圆心,长为半径作⊙T.若d(⊙T)满足d(⊙T)>+,直接写出圆心T的横坐标x的取值范围.20.(2023•常州一模)对于平面直角坐标系xOy中的图形M、N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P、Q两点间的距离有最小值,那么称这个最小值为图形M、N间的“图距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)d(点O,△ABC);(2)线段L是直线y=x(﹣2≤x≤2)上的一部分,若d(L,△ABC)=1,且L的长度最长时,求线段L两个端点的横坐标;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.21.(2023•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD是矩形,⊙O1和⊙O2都与边AD相切,⊙O2与边AB相切,⊙O1和⊙O3都经过点B,⊙O3经过点D,3个圆都经过点C.在这3个圆中,是矩形ABCD的第Ⅰ类圆的是,是矩形ABCD的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.22.(2023•常熟市模拟)定义:圆心在三角形的一条边上,并与三角形的其中一边所在直线相切的圆称为这个三角形的切圆,相切的边称为这个圆的切边.(1)如图1,△ABC中,AB=CB,∠A=30°,点O在AC边上,以OC为半径的⊙O恰好经过点B,求证:⊙O是△ABC的切圆.(2)如图2,△ABC中,AB=AC=5,BC=6,⊙O是△ABC的切圆,且另外两条边都是⊙O的切边,求⊙O的半径.(3)如图3,△ABC中,以AB为直径的⊙O恰好是△ABC的切圆,AC是⊙O的切边,⊙O与BC交于点F,取弧BF的中点D,连接AD交BC于点E,过点E作EH⊥AB于点H,若CF=8,BF=10,求AC和EH的长.23.(2023•工业园区校级二模)如果三角形的两个内角a与β叫满足2a+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=.(2)如图(1),AB是半圆的直径,AB=10,BC=6,C是半圆上的点,D是上的点,BD交AC于点E.①若D是的中点.则图中共有对“准互余三角形”;②当△DEC是“准互余三角形”时,求CE的长;③如图(2)所示,若F是上的点(不与B、C重合),G为射线AF上一点,且满足∠CBG=2∠CAB.当△ABG是“准互余三角形”时,求AG的长.24.(2023•常州一模)在平面直角坐标系xOy中,⊙O的半径是,A,B为⊙O外两点,AB=2.给出如下定义:平移线段AB,使平移后的线段A′B′成为⊙O的弦(点A′,B′分别为点A,B的对应点),线段AA′长度的最小值成为线段AB到⊙O的“优距离”.(1)如图1,⊙O中的弦P1P2、P3P4是由线段AB平移而得,这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段长度等于线段AB到⊙O的“优距离”;(2)若点A(0,7),B(2,5),线段AA′的长度是线段AB到⊙O的“优距离”,则点A′的坐标为;(3)如图2,若A,B是直线y=﹣x+6上两个动点,记线段AB到⊙O的“优距离”为d,则d的最小值是;请你在图2中画出d取得最小值时的示意图,并标记相应的字母.25.(2023•建邺区二模)【概念学习】在平面直角坐标系xOy中,⊙O的半径为1,若⊙O平移d个单位后,使某图形上所有点在⊙O内或⊙O上,则称d的最小值为⊙O对该图形的“最近覆盖距离”.例如,如图①,A(3,0),B(4,0),则⊙O对线段AB的“最近覆盖距离”为3.【概念理解】(1)⊙O对点(3,4)的“最近覆盖距离”为.(2)如图②,点P是函数y=2x+4图象上一点,且⊙O对点P的“最近覆盖距离”为3,则点P的坐标为.【拓展应用】(3)如图③,若一次函数y=kx+4的图象上存在点C,使⊙O对点C的“最近覆盖距离”为1,求k的取值范围.(4)D(3,m)、E(4,m+1),且﹣4<m<2,将⊙O对线段DE的“最近覆盖距离”记为d,则d的取值范围是.26.(2023•金坛区二模)对于⊙C与⊙C上一点A,若平面内的点P满足:射线AP与⊙C交于点Q,且PA=2QA,则称点P为点A关于⊙C的“倍距点”.已知平面直角坐标系xOy中,点A的坐标是(﹣,0).(1)如图1,点O为坐标原点,⊙O的半径是,点P是点A关于⊙O的“倍距点”.①若点P在x轴正半轴上,直接写出点P的坐标是;②若点P在第一象限,且∠PAO=30°,求点P的坐标;(2)设点T(t,0),以点T为圆心,TA长为半径作⊙T,一次函数y=x+4的图象分别与x轴、y轴交于D、E,若一次函数y=x+4的图象上存在唯一一点P,使点P是点A关于⊙T的“倍距点”,求t的值.27.(2023•高邮市校级模拟)A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB关于⊙C的内直角,特别地,当圆心C在∠APB边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.28.(2023秋•润州区校级月考)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.(1)当⊙O的半径为1时,①分别判断点M(3,1),N(,0),T(﹣1,)关于⊙O的反称点是否存在?若存在,直接求其坐标;②将⊙O沿x轴水平向右平移1个单位为⊙O′,点P在直线y=﹣x+1上,若点P关于⊙O′的反称点P′存在,且点P′不在坐标轴上,则点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+12与x轴,y轴分别交于点A、B,点E与点D分别在点A与点B的右侧2个单位,线段AE、线段BD都是水平的,若四边形ABDE四边上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,直接写出圆心C的横坐标的取值范围.29.(2023秋•秦淮区校级月考)【数学概念】我们把存在内切圆与外接圆的四边形称为双圆四边形.例如,如图①,四边形ABCD内接于⊙M,且每条边均与⊙P相切,切点分别为E,F,G,H,因此该四边形是双圆四边形.【性质初探】(1)双圆四边形的对角的数量关系是,依据是.(2)直接写出双圆四边形的边的性质.(用文字表述)(3)在图①中,连接GE,HF,求证GE⊥HF.【揭示关系】(4)根据双圆四边形与四边形、平行四边形、矩形、菱形、正方形的关系,在图②中画出双圆四边形的大致区域,并用阴影表示.【特例研究】(5)已知P,M分别是双圆四边形ABCD的内切圆和外接圆的圆心,若AB=1,∠BCD=60°,∠B=90°,则PM的长为.30.(2023秋•广陵区校级月考)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,则点C的坐标是,⊙C的半径是;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)若点P在y轴正半轴上运动,则当∠APB的度数最大时,点P的坐标为.2023年中考数学大题高分秘籍(江苏专用)专题13新定义材料阅读类创新题(江苏真题15道模拟30道)【真题再现】直面中考真题,实战培优提升一、解答题1.(2023·江苏南通·统考中考真题)定义:函数图像上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图像的“n阶方点”.例如,点13,13是函数y=x图像的“12(1)在①−2,−12;②(−1,−1);③(1,1)三点中,是反比例函数(2)若y关于x的一次函数y=ax−3a+1图像的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=−(x−n)2−2n+1图像的“n答案:(1)②③(2)3或−1;(3)1分析:(1)根据“n阶方点”的定义逐个判断即可;(2)如图作正方形,然后分a>0和a<0两种情况,分别根据“2阶方点”有且只有一个判断出所经过的点的坐标,代入坐标求出a的值,并舍去不合题意的值即可得;(3)由二次函数解析式可知其顶点坐标在直线y=-2x+1上移动,作出简图,由函数图象可知,当二次函数图象过点(n,-n)和点(-n,n)时为临界情况,求出此时n的值,由图象可得n的取值范围.【详解】(1)解:∵点−2,−12到∴不是反比例函数y=1∵点(−1,−1)和点(1,1)都在反比例函数y=1∴(−1,−1)和(1,1)是反比例函数y=1故答案为:②③;(2)如图作正方形,四个顶点坐标分别为(2,2),(-2,2),(-2,-2),(2,-2),当a>0时,若y关于x的一次函数y=ax−3a+1图象的“2阶方点”有且只有一个,则y=ax−3a+1过点(-2,2)或(2,-2),把(-2,2)代入y=ax−3a+1得:2=−2a−3a+1,解得:a=−1把(2,-2)代入y=ax−3a+1得:−2=2a−3a+1,解得:a=3;当a<0时,若y关于x的一次函数y=ax−3a+1图象的“2阶方点”有且只有一个,则y=ax−3a+1过点(2,2)或(-2,-2),把(2,2)代入y=ax−3a+1得:2=2a−3a+1,解得:a=−1;把(-2,-2)代入y=ax−3a+1得:−2=−2a−3a+1,解得:a=3综上,a的值为3或−1;(3)∵二次函数y=−(x−n)2−2n+1图象的顶点坐标为(n∴二次函数y=−(x−n)2−2n+1图象的顶点坐标在直线y∵y关于x的二次函数y=−(x−n)2−2n+1∴二次函数y=−(x−n)2−2n+1的图象与以顶点坐标为(n,n),(-n,n),(-n,-n),(n如图,当y=−(x−n)2−2n+1过点(n将(n,-n)代入y=−(x−n)2−2n+1解得:n=1,当y=−(x−n)2−2n+1过点(-n将(-n,n)代入y=−(x−n)2−2n+1解得:n=14或由图可知,若y关于x的二次函数y=−(x−n)2−2n+1图象的“n阶方点”一定存在,n【点睛】本题考查了新定义,反比例函数图象上点的坐标特点,一次函数的图象和性质,二次函数的图象和性质,正确理解“n阶方点”的几何意义,熟练掌握数形结合思想的应用是解题的关键.2.(2023·江苏南通·统考中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=1(1)分别判断函数y=x+2,y=x(2)设函数y=3x(x>0),y=−x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC(3)若函数y=x2−2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2答案:(1)函数y=x+2没有“等值点”;函数y=x2−x的“等值点”为(0,0),(2,2);(2)b=43或−23分析:(1)根据定义分别求解即可求得答案;(2)根据定义分别求A(3,3),B(b2,b(3)由记函数y=x2-2(x≥m)的图象为W1,将W1沿x=m翻折后得到的函数图象记为W2,可得W1与W2的图象关于x=m对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数y=x2−x,令y=x,则x解得:x1∴函数y=x(2)∵函数y=3x,令y=x,则解得:x=3∴函数y=3x的“等值点”为A(3,∵函数y=−x+b,令y=x,则x=−x+b,解得:x=b∴函数y=−x+b的“等值点”为B(b2,b△ABC的面积为12即b2解得:b=43或−2(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于x=m对称,∴函数W的解析式为y=x令y=x,则x2−2=x,即解得:x1∴函数y=x令y=x,则(2m−x)2−2=x,即当m≥2时,函数W的图象不存在恰有2个“等值点”的情况;当−1<m<2时,观察图象,恰有2个“等值点”;当m<−1时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴△=−整理得:8m+9<0,解得:m<−9综上,m的取值范围为m<−98或【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.3.(2023·江苏盐城·统考中考真题)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′.经过进一步探究,小明发现,当上述点P在某函数图像上运动时,点P′也随之运动,并且点试根据下列各题中所给的定点A的坐标和角度α的大小来解决相关问题.

【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图像上的动点,已知该一次函数的图像经过点P1(1)点P1旋转后,得到的点P(2)若点P′的运动轨迹经过点P【深入感悟】(3)如图2,设A(0,0),α=45°,点P反比例函数y=−1x(x<0)的图像上的动点,过点P′作二、四象限角平分线的垂线,垂足为【灵活运用】(4)如图3,设A(1,−3),α=60°,点P是二次函数y=12x2+2答案:(1)(1,3);(2)y=12x+3分析:(1)根据旋转的定义得AP1=AP1(2)根据题意得出P2(3)先根据y=−xy=−1x(x<0)计算出交点坐标,再分类讨论①当x≤−1时,先证明△PQA≌△P′MA(AAS)再计算△OM(4)先证明△OAB为等边三角形,再证明△C′AO≌△CAB(SAS),根据在Rt△C′GB中,∠C′GB=90°−∠C′B【详解】(1)由题意可得:A∴P′1故答案为:(1,3);(2)∵P′P2坐标为∵P1(−1,1),∴设原一次函数解析式为y=kx+b则−k+b=1∴k=∴原一次函数表达式为y=1(3)设双曲线与二、四象限平分线交于N点,则y=−x解得N(−1,1)①当x≤−1时作PQ⊥x轴于Q∵∠QAM=∠PO∴∠PAQ=∠∵PM⊥AM∴∠∴在△PQA和△P∠PQA=∠∴△PQA≌△S即S△OM②当-1<x<0时作PH⊥于y轴于点H∵∠PO∴∠PON=∠∴∠M=45°−∠∴∠POH=∠PO=45°−∠∴∠POH=∠OM在△POH和△OP∠PHO=∠OM∴△PHO≌△O∴S△(4)连接AB,AC,将B,C绕A逆时针旋转60°得B′,C′,作AH⊥x∵A(1,3)∴OH=BH=1∴OA=AB=OB=2∴△OAB为等边三角形,此时B′与O重合,即连接C′O∴∠CAB=∠∴在△C′AOC∴△∴C′O=CB=1∴作C′G⊥y在Rt△C∴C∴OG=32,即C′1设过P且与B′C′平行的直线∵S∴当直线l与抛物线相切时取最小值则y=即3∴1当Δ=0时,得b=∴y=设l与y轴交于T点∵S∴S==【点睛】本题考查旋转、全等三角形的判定和性质、一次函数的解析式、反比例函数的几何意义、两函数的交点问题,函数的最小值的问题,灵活进行角的转换是关键.4.(2023·江苏常州·统考中考真题)(现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC(1)沿AC、BC剪下△ABC,则△ABC是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm答案:(1)直角(2)见详解(3)小明的猜想正确,理由见详解分析:(1)AB是圆的直径,根据圆周角定理可知∠ACB=90°,即可作答;(2)以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;(3)当点C靠近点A时,设CM=13CA,CN=13CB,可证MN∥AB,推出MN=13AB=4cm,分别以M,N为圆心,MN为半径作弧交【详解】(1)解:如图,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB是直角,即△ABC是直角三角形,故答案为:直角;(2)解:以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,作图如下:由作图可知AE=EF=FH=HG=OA=12AB即四边形EFHG是边长为6cm的菱形;(3)解:小明的猜想正确,理由如下:如图,当点C靠近点A时,设CM=13∴CMCA∴MN∥∴MNAB∴MN=1分别以M,N为圆心,MN为半径作弧交AB于点P,Q,作MD⊥AB于点D,NE⊥AB于点E,∴MN=MP=NQ=4cm∵MN∥AB,MD⊥AB,∴MD=NE,在RtΔMDP和RtΔMP=NQMD=NE∴RtΔMDP≅∴∠MPD=∠NQE,∴MP//又∵MP=NQ,∴四边形MNQP是平行四边形,又∵MN=MP,∴四边形MNQP是菱形;同理,如图,当点C靠近点B时,采样相同方法可以得到四边形MNQP是菱形,故小明的猜想正确.【点睛】本题考查了圆周角定理、尺规作图、菱形的性质与判定等知识,解题的关键是理解题意,灵活运用上述知识解决问题.5.(2023·江苏常州·统考中考真题)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=42,OA=5,BC=12,连接AC,求AC(3)在四边形EFGH中,EH//FG.若边FG上的点O是四边形EFGH的“等形点”,求OFOG答案:(1)不存在,理由见详解(2)4(3)1分析:(1)根据“等形点”的概念,采用反证法即可判断;(2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=42,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC(3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据EH∥FG,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=【详解】(1)不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,∵在正方形ABCD中,点O在边BC上,∴∠ABO=90°,∵△OAB≌△OCD,∴∠ABO=∠CDO=90°,∴CD⊥DO,∵CD⊥BC,∴DO∥∵O点在BC上,∴DO与BC交于点O,∴假设不成立,故正方形不存在“等形点”;(2)如图,过A点作AM⊥BC于点M,如图,∵O点是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,∵CD=42,OA=5,BC∴AB=CD=42,OA=OC∴OB=BC-OC=12-5=7=OD,∵AM⊥BC,∴∠AMO=90°=∠AMB,∴设MO=a,则BM=BO-MO=7-a,∴在Rt△ABM和Rt△AOM中,AM∴AB2−B解得:a=3,即MO=3,∴MC=MO+OC=3+5=8,AM=∴在Rt△AMC中,AC=A即AC的长为45(3)如图,∵O点是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴OF=OH,OE=OG,∠EOF=∠GOH,∵EH∥∴∠EOF=∠OEH,∠GOH=∠EHO,∴根据∠EOF=∠GOH有∠OEH=∠OHE,∴OE=OH,∵OF=OH,OE=OG,∴OF=OG,∴OFOG【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.6.(2023·江苏南京·统考中考真题)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设AD的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.答案:(1)作图如图所示;(2)①h+l;②见解析.分析:(1)根据两点之间线段最短,即可得到最短路径;连接OA,AC,可以利用弧长与母线长求出∠AOC,进而证明出△OAC是等边三角形,利用三角函数即可求解;(2)①由于圆锥底面圆周上的任意一点到圆锥顶点的距离都等于母线长,因此只要蚂蚁从点A爬到圆锥底面圆周上的路径最短即可,因此顺着圆柱侧面的高爬行,所以得出最短路径长即为圆柱的高h加上圆锥的母线长l;②如图,根据已知条件,设出线段GC的长后,即可用它分别表示出OE、BE、GE、AF,进一步可以表示出BG、GA,根据B、G、A三点共线,在Rt△ABH中利用勾股定理建立方程即可求出GC的长,最后依次代入前面线段表达式中即可求出最短路径长.【详解】解:(1)如图所示,线段AB即为蚂蚁从点A爬行到点B的最短路径;设∠AOC=n°,∵圆锥的母线长为12cm,AC的长为4πcm∴12πn180∴n=60;连接OA、CA,∵OA=OC=12,∴△OAC是等边三角形,∵B为母线OC的中点,∴AB⊥OC,∴AB=OA×sin(2)①蚂蚁从点A爬行到点O的最短路径为:先沿着过A点且垂直于地面的直线爬到圆柱的上底面圆周上,再沿圆锥母线爬到顶点O上,因此,最短路径长为h+l②蚂蚁从点A爬行到点B的最短路径的示意图如下图所示,线段AB即为其最短路径(G点为蚂蚁在圆柱上底面圆周上经过的点,图中两个C点为图形展开前图中的C点);求最短路径的长的思路如下:如图,连接OG,并过G点作GF⊥AD,垂足为F,由题可知,OG=OC=l,GF=h,OB=b,由AD的长为a,得展开后的线段AD=a,设线段GC的长为x,则GC的弧长也为x,由母线长为l,可求出∠COG,作BE⊥OG,垂足为E,因为OB=b,可由三角函数求出OE和BE,从而得到GE,利用勾股定理表示出BG,接着由FD=CG=x,得到AF=a-x,利用勾股定理可以求出AG,将AF+BE即得到AH,将EG+GF即得到HB,因为两点之间线段最短,∴A、G、B三点共线,利用勾股定理可以得到:AB2=AH2将x的值回代到BG和AG中,求出它们的和即可得到最短路径的长.【点睛】本题考查的是曲面上的最短路径问题,涉及到圆锥和圆柱以及它们的组合体上的最短路径问题,解题过程涉及到“两点之间、线段最短”以及勾股定理和三角函数等知识,本题为开放性试题,答案形式不唯一,对学生的空间想象能力以及图形的感知力要求较高,蕴含了数形结合等思想方法.7.(2023·江苏苏州·统考中考真题)如图①,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为ℎ甲,容器乙的水位高度记为ℎ乙,设ℎ乙−ℎ甲=ℎ①求a的值;②求图③中线段PN所在直线的解析式.答案:(1)甲600立方米,乙240立方米;(2)①a=37.5;②ℎ=−1分析:(1)根据题意画出图形即可直接得出正方形ABCD的边长AB=10,即可求出容器甲的容积;连接FH,由圆周角定理的推论可知FH为直径,即FH=10,再在Rt△EFH中,根据勾股定理即可求出EF和EH的长,即可求出容器乙的容积.(2)根据题意可求出容器甲的底面积为100平方米,容器乙的底面积为40平方米.①当t=4时,根据题意即可求出此时ℎ的值,即得出M点坐标.由MN平行于横轴,即得出N点坐标,即6小时后高度差仍为ℎ米,由此即可列出关于a的等式,解出a即可.②设注水b小时后,ℎ乙−ℎ甲=0,根据题意可列出关于b的等式,解出b即得到P【详解】(1)由图知,正方形ABCD的边长AB=10,∴容器甲的容积为102如图,连接FH,∵∠FEH=90°,∴FH为直径.在Rt△EFH中,EF=2EH,FH=10,根据勾股定理,得EF=45,EH=2∴容器乙的容积为25(2)根据题意可求出容器甲的底面积为10×10=100平方米,容器乙的底面积为①当t=4时,ℎ=4×25∵MN平行于横轴,∴M4,1.5,N由上述结果,知6小时后高度差仍为1.5米,∴25×640解得a=37.5.②设注水b小时后,ℎ乙−ℎ解得b=9,即P9,0设线段PN所在直线的解析式为ℎ=kt+m,∵N6,1.5、P9,0在直线∴1.5=6k+m0=9k+m解得:k=−1∴线段PN所在直线的解析式为ℎ=−1【点睛】本题考查圆的内接和外切四边形的性质,圆周角定理,勾股定理以及一次函数的实际应用.根据题意画出图形求出两个容器的各边长和理解题意找出等量关系是解答本题的关键.8.(2023·江苏扬州·统考中考真题)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为___________;②△ABC面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠B(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=①线段PB长的最小值为_______;②若S△PCD=2答案:(1)①2;②3+2;(2)见解析;(3)①97−5分析:(1)①设O为圆心,连接BO,CO,根据圆周角定理得到∠BOC=60°,证明△OBC是等边三角形,可得半径;②过点O作BC的垂线,垂足为E,延长EO,交圆于D,以BC为底,则当A与D重合时,△ABC的面积最大,求出OE,根据三角形面积公式计算即可;(2)延长BA′,交圆于点D,连接CD,利用三角形外角的性质和圆周角定理证明即可;(3)①根据tan∠DPC=43,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,可得点P在优弧CPD上,连接BQ,与圆Q交于P′,可得BP′即为BP的最小值,再计算出BQ和圆②根据AD,CD和S△PCD=23S△PAD推出点P在∠ADC的平分线上,从而找到点P的位置,过点C作CF⊥【详解】解:(1)①设O为圆心,连接BO,CO,∵∠BAC=30°,∴∠BOC=60°,又OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=2,即半径为2;②∵△ABC以BC为底边,BC=2,∴当点A到BC的距离最大时,△ABC的面积最大,如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,∴BE=CE=1,DO=BO=2,∴OE=BO2−B∴DE=3+2∴△ABC的最大面积为12×2×3(2)如图,延长BA′,交圆于点D,连接CD,∵点D在圆上,∴∠BDC=∠BAC,∵∠BA′C=∠BDC+∠A′CD,∴∠BA′C>∠BDC,∴∠BA′C>∠BAC,即∠BA′C>30°;(3)①如图,当点P在BC上,且PC=32∵∠PCD=90°,AB=CD=2,AD=BC=3,∴tan∠DPC=CDPC=4连接PD,设点Q为PD中点,以点Q为圆心,12PD∴当点P在优弧CPD上时,tan∠DPC=43,连接BQ,与圆Q交于P此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,∵点Q是PD中点,∴点E为PC中点,即QE=12CD=1,PE=CE=12PC=∴BE=BC-CE=3-34=9∴BQ=BE2+Q∵PD=CD2+P∴圆Q的半径为12∴BP′=BQ-P′Q=97−54,即BP的最小值为②∵AD=3,CD=2,S△PCD则CDAD∴△PAD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在∠ADC的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=22=2∵tan∠DPC=CFPF=4∴PF=32∴PD=DF+PF=2+32【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P的轨迹.9.(2023·江苏连云港·统考中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图1,求CF的长;(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.答案:(1)1;(2)3;(3)323;(4)3分析:(1)由ΔABC、ΔBEF是等边三角形,BA=BC,BE=BF,∠ABE=∠CBF,可证ΔABE≌ΔCBF即可;(2)连接CF,ΔABC、ΔBEF是等边三角形,可证ΔABE≌ΔCBF,可得∠BCF=∠ABC,又点E在C处时,CF=AC,点E在A处时,点F与C重合.可得点F运动的路径的长=AC=3;(3)取BC中点H,连接HN,由ΔABC、ΔBMN是等边三角形,可证ΔDBM≌ΔHBN,可得NH⊥BC.又点M在C处时,HN=CD=332,点M在D处时,点N与H重合.可求点N(4)连接CG,AC,OB,由∠CGA=90°,点G在以AC中点为圆心,AC为直径的BC上运动,由四边形ABCD为正方形,BC为边长,设OC=x,由勾股定理CO2+BO2=BC2即,可求x=322,点G【详解】解:(1)∵ΔABC、ΔBEF是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF=60°.∴∠ABE+∠CBE=∠CBF+∠CBE,∴∠ABE=∠CBF,∴ΔABE≌ΔCBF,∴CF=AE=1;(2)连接CF,∵ΔABC、ΔBEF是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF=60°.∴∠ABE+∠CBE=∠CBF+∠CBE,∴∠ABE=∠CBF,∴ΔABE≌ΔCBF,∴CF=AE,∠BCF=∠BAE=60°,∵∠ABC=60°,∴∠BCF=∠ABC,∴CF//AB,又点E在C处时,CF=AC,点E在A处时,点F与C重合.∴点F运动的路径的长=AC=3;(3)取BC中点H,连接HN,∴BH=1∴BH=1∵CD⊥AB,∴BD=1∴BH=BD,∵ΔABC、ΔBMN是等边三角形,∴BM=BN,∠ABC=∠MBN=60°,∴∠DBM+∠MBH=∠HBN+∠MBH,∴∠DBM=∠HBN,∴ΔDBM≌ΔHBN,∴HN=DM,∠BHN=∠BDM=90°,∴NH⊥BC,又点M在C处时,HN=CD=332,点M在D处时,点N∴点N所经过的路径的长=CD=3(4)连接CG,AC,OB,∵∠CGA=90°,∴点G在以AC中点为圆心,AC为直径的BC上运动,∵四边形ABCD为正方形,BC为边长,∴∠COB=90°,设OC=x,由勾股定理CO2+B∴x=3点G所经过的路径长为BC长=14点H在以BC中点为圆心,BC长为直径的弧BN上运动,点H所经过的路径长为BN的长度,∵点G运动圆周的四分之一,∴点H也运动圆周的四分一,点H所经过的路径长为BN的长=14故答案为34π;【点睛本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.10.(2023·江苏盐城·统考中考真题)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于1中的木门,当模具换成边长为303厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②答案:(1)480cm;(2)雕刻所得图案的草图见解析,图案的周长为600−120分析:(1)过点P作PE⊥CD,求出PE,进而求得该图案的长和宽,利用长方形的周长公式即可解答;(2)如图,过P作PQ⊥CD于Q,连接PG,先利用等边三角形的性质求出PQ、PG及∠PGE,当移动到点P'时,求得旋转角和点P旋转的路径长,用同样的方法继续移动,即可画出图案的草图,再结合图形可求得所得图案的周长.【详解】1如图,过点P作PE⊥CD,垂足为E∵P是边长为30cm的正方形模具的中心,∴PE=15cm,同理:A′B′与A'D'与AD之间的距离为15cm,B'C′与BC∴A'B'=C'D'=200−15−15=170cm,B'C'=A'D'=100−15−15=70cm,∴C答:图案的周长为480cm.2如图,连接PE、PF、PG,过点P作PQ⊥CD,垂足为Q∵P是边长为30cm的等边三角形模具的中心,∴PE=PG=PF,∠PGF=30°∵PQ⊥GF,∴GQ=QF=15∴PQ=CQ⋅tan30°=15cm,PG=CQ当三角形EFG向上平移至点G与点D重合时,由题意可得:△E'F′G′使得E'G'与AD边重合∴DP'绕点D顺时针旋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论