




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东清远恒大足球学校2025届高一下数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足,和的夹角为,则()A. B. C. D.12.下列不等式正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为A.5 B.4 C.2 D.14.已知向量,,则()A.-1 B.-2 C.1 D.05.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为()A. B. C. D.6.与直线垂直于点的直线的一般方程是()A. B. C. D.7.已知,则下列不等式中成立的是()A. B. C. D.8.已知,且,把底数相同的指数函数与对数函数图象的公共点称为(或)的“亮点”.当时,在下列四点,,,中,能成为的“亮点”有()A.0个 B.1个 C.2个 D.3个9.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④10.若实数a>b,则下列结论成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx2二、填空题:本大题共6小题,每小题5分,共30分。11.若角是第四象限角,则角的终边在_____________12.终边经过点,则_____________13.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.14.如图,在中,,是边上一点,,则.15.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值为________.16.已知数列是等差数列,若,,则公差________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.18.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.19.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.20.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.21.已知函数.(1)求的值;(2)设,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.2、B【解析】试题分析:A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B.若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.考点:不等式的性质.3、C【解析】试题分析:由已知有,∴,∴.考点:1.两直线垂直的充要条件;2.均值定理的应用.4、C【解析】
根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.5、D【解析】
计算得到,,再计算概率得到答案.【详解】,解得;,解得;故.故选:.【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.6、A【解析】由已知可得这就是所求直线方程,故选A.7、D【解析】
由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.8、C【解析】
利用“亮点”的定义对每一个点逐一分析得解.【详解】由题得,,由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点不在函数f(x)的图像上,所以点不是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”;由于,所以点在函数f(x)和g(x)的图像上,所以点是“亮点”.故选C【点睛】本题主要考查指数和对数的运算,考查指数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解析】
取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.10、C【解析】
特值法排除A,B,D,单调性判断C【详解】由题意,可知:对于A:当a、b都是负数时,很明显a2<b2,故选项A不正确;对于B:当a为正数,b为负数时,则有,故选项B不正确;对于C:∵a>b,∴2a>2b>0,∴ln2a>ln2b,故选项C正确;对于D:当x=0时,结果不成立,故选项D不正确;故选:C.【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、第二或第四象限【解析】
根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.12、【解析】
根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.13、【解析】
利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.14、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.15、-3【解析】试题分析:由两直线平行可得:,经检验可知时两直线重合,所以.考点:直线平行的判定.16、1【解析】
利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=1.故答案为:1.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【详解】解:(1)依题意得,所以又因为,故线性回归方程为.(2)将的6个值,代入(1)中回归方程可知,前3个小于30,后3个大于30,所以满足分钟的有效运动数据的共有3个,设3个有效运动数据为,另3个不是有效运动数据为,则从6个数据中任取3个共有20种情况(或一一列举),其中,抽取的3个数据恰有两个为有效运动数据的有9种情况,即,,所以从这6个时间数据中任取3个,抽取的3个数据恰有两个为有效运动数据的概率为.【点睛】本题考查线性回归方程的建立,古典概型的概率,考查数据处理能力,运用知识解决实际问题的能力,属于中档题.18、(1),;(2),【解析】
(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值.【详解】解:(1)令,解得,即函数的单调递增区间为,(2)由(1)知所以当,即时,当,即时,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.19、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】
试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.20、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《深入了解硫酸生产》课件
- 《阿里巴巴商业模式分析》课件
- 铁路旅客运输服务高铁时代的客运服务课件
- 《三峡人家风光览》课件
- 房屋买卖纠纷调解协议
- 铁道机车专业教学郑州铁路毛乾亚课件
- 铁路班组管理建设班组创新文化课件
- 铁路市场营销产品生命周期概述课件
- 铁路线路安全防护邵鹏飞年课件
- 河底固定电缆施工方案
- 低年级语文识字教学课件
- 基因毒性杂质控制-课件
- 初一泛读黑布林 《霍利的新朋友》
- 粉笔国考行测模考大赛第十季
- 老年综合评估和老年综合征PPT通用通用课件
- 超星尔雅学习通《人力资源招聘与选拔》章节测试含答案
- 路面级配砂砾石垫层施工总结报告
- 主提升机司机培训课件
- 连续油管作业技术(共122页).ppt
- 互联网大学生创新创业大赛培训
- 3号钢筋加工场桁吊安装方案
评论
0/150
提交评论