贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题含解析_第1页
贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题含解析_第2页
贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题含解析_第3页
贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题含解析_第4页
贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔东南州锦屏县民族中学2025届高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.42.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.3.已知等比数列中,,,则()A.10 B.7 C.4 D.124.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.5.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.6.如图,三棱柱中,侧棱底面ABC,,,,则异面直线与所成角的余弦值为()A. B. C. D.7.若经过两点、的直线的倾斜角为,则等于()A. B. C. D.8.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.9.若,且,则的值是()A. B. C. D.10.已知函数f(x)满足:f(x)=-f(-x),且当x∈(-∞,0]时,成立,若则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.方程在区间的解为_______.13.在中,若,,,则________.14.已知当时,函数(且)取得最小值,则时,的值为__________.15.已知等差数列的前项和为,且,,则;16.已知正实数满足,则的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?18.已知函数为奇函数,且.(1)求实数a与b的值;(2)若函数,数列为正项数列,,且当,时,,设(),记数列和的前项和分别为,且对有恒成立,求实数的取值范围.19.已知数列前项和为,,且满足().(Ⅰ)求数列的通项公式;(Ⅱ)若,设数列前项和为,求证:.20.在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求内角B的大小;(2)设,,的最大值为5,求k的值.21.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题:(1)计算:,,;(2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解析】

由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.3、C【解析】

由等比数列性质可知,进而根据对数的运算法则计算即可【详解】由题,因为等比数列,所以,则,故选:C【点睛】本题考查等比数列的性质的应用,考查对数的运算4、C【解析】

根据圆的标准方程的形式写.【详解】圆心为,半径为2的圆的标准方程是.故选C.【点睛】本题考查了圆的标准方程,故选C.5、A【解析】

由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.6、A【解析】

以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知求与的坐标,由两向量所成角的余弦值求解异面直线与所成角的余弦值.【详解】如图,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知得:,,所以,.设异面直线与所成角,则故异面直线与所成角的余弦值为.故选:A【点睛】本题主要考查了利用空间向量求解线线角的问题,属于基础题.7、D【解析】

由直线的倾斜角得知直线的斜率为,再利用斜率公式可求出的值.【详解】由于直线的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.8、B【解析】

根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【点睛】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.9、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.10、B【解析】

根据已知条件判断出函数的奇偶性,利用构造函数法,结合已知条件,判断出的单调性,结合的奇偶性比较出的大小关系.【详解】由于,所以为奇函数.构造函数,依题意,当时,,所以在区间上递减.由于,所以为偶函数,故在上递增..,.由于,所以.故选:B【点睛】本小题主要考查函数的奇偶性和单调性,考查构造函数法判断函数的单调性,考查比较大小的方法,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.12、或【解析】

由题意求得,利用反三角函数求出方程在区间的解.【详解】解:,得,,或,;方程在区间的解为:或.故答案为:或.【点睛】本题考查了三角函数方程的解法与应用问题,是基础题.13、2;【解析】

利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.14、3【解析】

先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.15、1【解析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.16、【解析】

对所求式子平边平方,再将代入,从而将问题转化为求【详解】∵∵,∴,∴,等号成立当且仅当.故答案为:.【点睛】本题考查条件等式下利用基本不等式求最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意等号成立的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)80;(2)(1)班.【解析】

(1)从茎叶图可直接得到答案;(2)通过方差公式计算出两个半的方差,方差更小的更稳定.【详解】(1)从茎叶图中可以看到,这12份成绩按从小到大排列,第6个是78,第7个是82,所以中位数为.(2)由表中数据,易得(1)班的6份成绩的平均数,(2)班的6份成绩的平均数,所以(1)班的6份成绩的方差为;(2)班的6份成绩的方差为.所以有,说明(1)班成绩波动较小,(2)班两极分化较严重些,所以(1)班成绩更稳定.【点睛】本题主要考查中位数,平均数,方差的相关计算和性质,意在考查学生的计算能力及分析能力,难度不大.18、(1);(2)【解析】

(1)根据函数奇偶性得到,再由,得;(2),将原式化简得到,进而得到,数列的前项和,,原恒成立问题转化为对恒成立,对n分奇偶得到最值即可.【详解】(1)因为为奇函数,,得,又,得.(2)由(1)知,得,又,化简得到:,又,所以,又,故,则数列的前项和;又,则数列的前项和为,对恒成立对恒成立对恒成立,令,则当为奇数时,原不等式对恒成立对恒成立,又函数在上单增,故有;当为偶数时,原不等式对恒成立对恒成立,又函数在上单增,故有.综上得.【点睛】这个题目考查了函数的奇偶性的应用以及数列通项公式的求法,数列前n项和的求法,还涉及不等式恒成立的问题,属于综合性较强的题目,数列中最值的求解方法如下:1.邻项比较法,求数列的最大值,可通过解不等式组求得的取值范围;求数列的最小值,可通过解不等式组求得的取值范围;2.数形结合,数列是一特殊的函数,分析通项公式对应函数的特点,借助函数的图像即可求解;3.单调性法,数列作为特殊的函数,可通过函数的单调性研究数列的单调性,必须注意的是数列对应的是孤立的点,这与连续函数的单调性有所不同;也可以通过差值的正负确定数列的单调性.19、(Ⅰ)(Ⅱ)详见解析【解析】【试题分析】(1)借助递推关系式,运用等比数列的定义分析求解;(2)依据题设条件运用列项相消求和法进行求解:(Ⅰ),由(),得(),两式相减得.由,得,又,所以是以为首项,3为公比的等比数列,故.(Ⅱ),,.20、(1),(2)【解析】

解:(1)(3分)又在中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论