2025届江苏省镇江市重点名校高一数学第二学期期末预测试题含解析_第1页
2025届江苏省镇江市重点名校高一数学第二学期期末预测试题含解析_第2页
2025届江苏省镇江市重点名校高一数学第二学期期末预测试题含解析_第3页
2025届江苏省镇江市重点名校高一数学第二学期期末预测试题含解析_第4页
2025届江苏省镇江市重点名校高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省镇江市重点名校高一数学第二学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.2.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线3.的值等于()A. B. C. D.4.已知是等差数列的前项和,公差,,若成等比数列,则的最小值为()A. B.2 C. D.5.已知中,,,点是的中点,是边上一点,则的最小值是()A. B. C. D.6.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.7.若,则函数的单调递增区间为()A. B. C. D.8.已知向量,且,则的值为()A.6 B.-6 C. D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.10.已知函数,则在上的单调递增区间是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,在轴、轴正方向上的投影分别是、,则与同向的单位向量是__________.12.若锐角满足则______.13.己知是等差数列,是其前项和,,则______.14.若角的终边经过点,则实数的值为_______.15.若各项均为正数的等比数列,,则它的前项和为______.16.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,且,,,点在上,且.(1)求证:平面⊥平面;(2)求证:直线∥平面.18.记Sn为等比数列的前n项和,已知S2=2,S3=-6.(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.19.有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100元.设该款手机每部使用年共需维修费用元,总费用元.(总费用购买费用网络费和电话费维修费用)(1)求函数、的表达式:(2)这款手机每部使用多少年时,它的年平均费用最少?20.已知中,,,点D在AB上,,并且.(1)求BC的长度;(2)若点E为AB中点,求CE的长度.21.已知等比数列的前项和为,,,且.(1)求的通项公式;(2)是否存在正整数,使得成立?若存在,求出的最小值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.2、A【解析】

逐一考查所给的选项是否正确即可.【详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.3、C【解析】

根据特殊角的三角函数值,得到答案.【详解】.故选C项.【点睛】本题考查特殊角的三角函数值,属于简单题.4、A【解析】

由成等比数列可得数列的公差,再利用等差数列的前项和公式及通项公式可得为关于的式子,再利用对勾函数求最小值.【详解】∵成等比数列,∴,解得:,∴,令,令,其中的整数,∵函数在递减,在递增,∴当时,;当时,,∴.故选:A.【点睛】本题考查等差数列与等比数列的基本量运算、函数的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数,如果利用基本不等式求解,等号是取不到的.5、B【解析】

通过建系以及数量积的坐标运算,从而转化为函数的最值问题.【详解】根据题意,建立图示直角坐标系,,,则,,,.设,则,是边上一点,当时,取得最小值,故选.【点睛】本题主要考察解析法在向量中的应用,将平面向量的数量积转化成了函数的最值问题.6、B【解析】

分别求出四个选项中函数的周期,排除选项后,再通过函数的单调减区间找出正确选项即可.【详解】由题意观察选项,C的周期不是,所以C不正确;对于A,,函数的周期为,但在区间上为增函数,故A不正确;对于B,,函数的周期为,且在区间上为减函数,故B正确;对于D,,函数的周期为,但在区间上为增函数,故D不正确;故选:B【点睛】本题主要考查三角函数的性质,需熟记正弦、余弦、正切、余切的性质,属于基础题.7、B【解析】

由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【点睛】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.8、A【解析】

两向量平行,內积等于外积。【详解】,所以选A.【点睛】本题考查两向量平行的坐标运算,属于基础题。9、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10、C【解析】

先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得出,再利用单位向量的定义即可求解.【详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【点睛】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.12、【解析】

由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.13、-1【解析】

由等差数列的结合,代入计算即可.【详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【点睛】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.14、.【解析】

利用三角函数的定义以及诱导公式求出的值.【详解】由诱导公式得,另一方面,由三角函数的定义得,解得,故答案为.【点睛】本题考查诱导公式与三角函数的定义,解题时要充分利用诱导公式求特殊角的三角函数值,并利用三角函数的定义求参数的值,考查计算能力,属于基础题.15、【解析】

利用等比数列的通项公式求出公比,由此能求出它的前项和.【详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【点睛】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.16、【解析】四棱锥的侧面积是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)通过边长关系可知,所以,又,所以平面,所以平面平面.(2)连接交与点,连接,易得∽,所以,所以直线平面.,【详解】(1)因为,,所以,所以又,且,平面,平面所以平面又平面所以平面平面(2)连接交与点,连接在四边形中,,∽,所以又,即所以又直线平面,直线平面所以直线平面【点睛】(1)证明面面垂直:先正线面垂直,线又属于另一个面,即可证明面面垂直.(2)证明线面平行,在面内找一个线与已知直线平行即可.18、(1);(2)见解析.【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列.试题解析:(1)设的公比为.由题设可得,解得,.故的通项公式为.(2)由(1)可得.由于,故,,成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.19、(1),;(2)这款手机使用年时它的年平均费用最少【解析】

(1)第年的维修费用为,根据等差数列求和公式可求得;将加上购买费用和年的网络费和电话费总额即可得到;(2)平均费用,利用基本不等式可求得最小值,根据取等条件可求得的取值.【详解】(1)则(2)设每部手机使用年的平均费用为则当,即时,这款手机使用年时它的年平均费用最少【点睛】本题考查构造合适的函数模型解决实际问题,涉及到函数最值的求解问题;解决本题中最值问题的关键是能够得到符合基本不等式的形式,利用基本不等式求得和的最小值.20、(1);(2)【解析】

(1)根据所给条件,结合三角函数可先求得.再由即可求得,进而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E为AB中点,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【详解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又点E为AB中点,可得,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论