陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题含解析_第1页
陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题含解析_第2页
陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题含解析_第3页
陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题含解析_第4页
陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市碑林区教育局2025届数学高一下期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,82.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°3.如果角的终边经过点,那么的值是()A. B. C. D.4.已知向量,,则与夹角的大小为()A. B. C. D.5.设二次函数在区间上单调递减,且,则实数的取值范围是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]6.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.圆关于直线对称,则的值是()A. B. C. D.8.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.49.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品10.已知的三个顶点都在一个球面上,,且该球的球心到平面的距离为2,则该球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则________.12.设当时,函数取得最大值,则______.13.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.14.不论k为何实数,直线通过一个定点,这个定点的坐标是______.15.若方程表示圆,则实数的取值范围是______.16.已知为等差数列,为其前项和,若,则,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四面体中,,,为的中点.(1)证明:;(2)已知是边长为2正三角形.(Ⅰ)若为棱的中点,求的大小;(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.18.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与19.已知函数,若,且,,求满足条件的,.20.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.21.在中,角,,的对边分别为,,,且.(1)求角的大小;(2)若,的面积为,求边的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由题意得,,选C.考点:茎叶图2、B【解析】

连接,可证是异面直线与所成的角或其补角,求出此角即可.【详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【点睛】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.3、D【解析】

根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.4、D【解析】

根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【点睛】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.5、D【解析】

求出导函数,题意说明在上恒成立(不恒等于0),从而得,得开口方向,及函数单调性,再由函数性质可解.【详解】二次函数在区间上单调递减,则,,所以,即函数图象的开口向上,对称轴是直线.所以f(0)=f(2),则当时,有.【点睛】实际上对二次函数,当时,函数在递减,在上递增,当时,函数在递增,在上递减.6、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.7、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.8、B【解析】

由等差数列的性质计算.【详解】由题意,,∴.故选B.【点睛】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.9、B【解析】

根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.10、C【解析】

先算出的外接圆的半径,然后根据勾股定理可得球的半径,由此即可得到本题答案.【详解】设点O为球心,因为,所以的外接圆的圆心为AC的中点M,且半径,又因为该球的球心到平面的距离为2,即,在中,,所以该球的半径为,则该球的表面积为.故选:C【点睛】本题主要考查球的表面积的相关问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.12、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.13、.【解析】

先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.14、(2,3)【解析】

将直线方程变形为,它表示过两直线和的交点的直线系,解方程组,得上述直线恒过定点,故答案为.【方法点睛】本题主要考查待定直线过定点问题.属于中档题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.15、.【解析】

把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.16、【解析】

利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)(Ⅰ);(Ⅱ)【解析】

(1)取中点,连接,通过证明,证得平面,由此证得.(2)(I)通过证明,证得平面,由此证得,利用“直斜边的中线等于斜边的一半”这个定理及其逆定理,证得.(II)利用求得四面体的体积的表达式,结合基本不等式求得四面体的体积的最大值.【详解】(1)取的中点,所以,所以.又因为,所以,又,所以面,所以.(2)(Ⅰ)由题意得,在正三角形中,,又因为,且,所以面,所以.∵为棱的中点,∴,在中,为的中点,.∴(Ⅱ),四面体的体积,又因为,即,所以等号当且仅当时成立,此时.故所求的四面体的体积的最大值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查直角三角形的判定,考查三棱锥体积的最大值的求法,考查基本不等式的运用,考查空间想象能力和逻辑推理能力,属于中档题.18、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实数的取值范围为.(Ⅲ)()对任意的(a)若且,则,,这与在上单调递增矛盾,(舍),(b)若且,则,这与是“函数”矛盾,(舍).此时,由的定义域为,故对任意的,与恰有一个属于,另一个属于.()假设存在,使得,则由,故.(a)若,则,矛盾,(b)若,则,矛盾.综上,对任意的,,故,即,则.()假设,则,矛盾.故故,.经检验,.符合题意点睛:此题是新定义的题目,根据已知的新概念,新信息来马上应用到题型中,根据函数的定义即函数没有关于原点对称的部分即可,故可以从图像的角度来研究函数;第三问可以假设存在,最后推翻结论即可。19、,【解析】

利用三角恒等变换,化简的解析式,从而得出结论.【详解】解:,∴,待定系数,可得,又,∴,∴,.【点睛】本题主要考查三角恒等变换,属于基础题.20、(1),(2)【解析】

(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【点睛】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论