版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省九江同文中学高一下数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是A.或 B.或C. D.2.在△ABC中,,则A等于()A.30° B.60° C.120° D.150°3.数列1,3,6,10,…的一个通项公式是()A. B.C. D.4.已知关于的不等式对任意恒成立,则的取值范围是()A. B.C. D.5.若,且,则下列不等式中正确的是()A. B. C. D.6.执行如图所示的程序框图,输出的s值为A. B.C. D.7.无论取何实数,直线恒过一定点,则该定点坐标为()A. B. C. D.8.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10 B.11 C.12 D.139.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040t5070根据上表提供的数据,求出y关于x的回归直线方程为y=6.5x+17.5,则tA.40 B.50 C.60 D.7010.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.96二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是等差数列,,那么使其前项和最小的是______.12.设集合,它共有个二元子集,如、、等等.记这个二元子集为、、、、,设,定义,则_____.(结果用数字作答)13.已知等比数列的前项和为,若,且,则_____.14.数列的前项和为,,,则________.15.数列an满足12a116.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.18.若,且,求的值.19.函数.(1)求函数的周期和递增区间;(2)若,求函数的值域.20.求下列方程和不等式的解集(1)(2)21.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
把原不等式化简为,即可求解不等式的解集.【详解】由不等式即,即,得,则不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
试题分析:考点:余弦定理解三角形3、C【解析】
试题分析:可采用排除法,令和,验证选项,只有,使得,故选C.考点:数列的通项公式.4、A【解析】
分别讨论和两种情况下,恒成立的条件,即可求得的取值范围.【详解】当时,不等式可化为,其恒成立当时,要满足关于的不等式任意恒成立,只需解得:.综上所述,的取值范围是.故选:A.【点睛】本题考查了含参数一元二次不等式恒成立问题,解题关键是掌握含有参数的不等式的求解,首先需要对二次项系数讨论,注意分类讨论思想的应用,属于基础题.5、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。6、B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.7、A【解析】
通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.8、C【解析】
先由男女生总数以及抽取的人数确定抽样比,由男生总人数乘以抽样比即可得出结果.【详解】用分层抽样的方法从校乐团中抽取人,所得抽样比为,因此抽取到的男同学人数为人.故选C【点睛】本题主要考查分层抽样,熟记概念即可,属于常考题型.9、C【解析】分析:由题意,求得这组熟记的样本中心(x详解:由题意,根据表中的数据可得x=2+4+5+6+85把(x,y)代入回归直线的方程,得点睛:本题主要考查了回归分析的初步应用,其中熟记回归直线的基本特征——回归直线方程经过样本中心点是解答的关键,着重考查了推理与运算能力.10、B【解析】
利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。12、1835028【解析】
分别分析中二元子集中较大元素分别为、、、时,对应的二元子集中较小的元素,再利用题中的定义结合数列求和思想求出结果.【详解】当二元子集较大的数为,则较小的数为;当二元子集较大的数为,则较小的数为、;当二元子集较大的数为,则较小的数为、、;当二元子集较大的数为,则较小的数为、、、、.由题意可得,令,得,上式下式得,化简得,因此,,故答案为:.【点睛】本题考查新定义,同时也考查了数列求和,解题的关键就是找出相应的规律,列出代数式进行计算,考查运算求解能力,属于难题.13、4或1024【解析】
当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.14、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、14,n=1【解析】
试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.16、【解析】
求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】
(1).若,则,结合三角函数的关系式即可求的值;
(2).若与的夹角为,利用向量的数量积的坐标公式进行求解即可求的值.【详解】(1)由,则即,所以所以(2),又与的夹角为,则即即由,则所以,即【点睛】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,属于基础题.18、【解析】
本题首先可根据以及诱导公式得出,然后根据以及同角三角函数关系计算出,最后根据即可得出结果.【详解】因为,所以,因为,所以,因为,所以解得,.【点睛】本题考查同角三角函数关系的应用,考查的公式有、以及,考查计算能力,是简单题.19、(1)周期为,单调递增区间为;(2).【解析】
(1)利用二倍角降幂公式、两角差的正弦公式将函数的解析式化简为,然后利用周期公式可计算出函数的周期,解不等式即可得出函数的单调递增区间;(2)由计算出的取值范围,可得出的范围,进而可得出函数的值域.【详解】(1),所以,函数的周期为,由,解得,因此,函数的单调递增区间为;(2)当时,,则,,因此,函数在区间上的值域为.【点睛】本题考查正弦型三角函数周期、单调区间以及值域的求解,解题的关键就是利用三角恒等变换思想将解析式进行化简,考查运算求解能力,属于中等题.20、(1)或;(2).【解析】
(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络布线合同范本
- 2024至2030年企鹅被项目投资价值分析报告
- 正规租房合同
- 贵阳市写字楼租赁合同范本
- 保险销售年度工作总结(7篇)
- 2024年中国男式彩棉内衣市场调查研究报告
- 运动鞋营销策划书(合集4篇)
- 2025年度酒吧吧台承包管理及夜生活服务合同3篇
- 家庭装修合同样本
- 2025版企业培训效果评估与绩效提升合同3篇
- 2024年广东省普通高中学业水平合格性地理试卷(1月份)
- 住宅楼安全性检测鉴定方案
- 配送管理招聘面试题与参考回答2024年
- 江苏省语文小学三年级上学期期末试题及解答参考(2024年)
- 黑龙江哈尔滨市省实验中学2025届数学高一上期末监测试题含解析
- 小学一年级数学思维训练100题(附答案)
- 安全生产治本攻坚三年行动方案(一般工贸) 2024
- 2024年广东省广州市黄埔区中考一模语文试题及答案
- 饭堂挂靠协议合同范本
- 2023-2024学年辽宁省重点高中沈阳市郊联体高二上学期期末考试生物试题(解析版)
- 借款分期还款合同
评论
0/150
提交评论