内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第1页
内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第2页
内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第3页
内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第4页
内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼和浩特回民中学2025届高一数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为13.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.4.已知函数和在区间I上都是减函数,那么区间I可以是()A. B. C. D.5.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.6.已知点,则P在平面直角坐标系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限7.设,则下列结论正确的是()A. B. C. D.8.函数,的值域是()A. B. C. D.9.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形10.给定函数:①;②;③;④,其中奇函数是()A.① B.② C.③ D.④二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在直角梯形中,//是线段上一动点,是线段上一动点,则的最大值为________.12.设,,则______.13.设等差数列,的前项和分别为,,若,则__________.14.已知方程的四个根组成一个首项为的等差数列,则_____.15.实数2和8的等比中项是__________.16.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.18.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.19.如图所示,函数的图象与轴交于点,且该函数的最小正周期为.(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当时,求的值.20.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.21.已知直线:及圆心为的圆:.(1)当时,求直线与圆相交所得弦长;(2)若直线与圆相切,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据已知不等式可得,;根据各象限内三角函数的符号可确定角所处的象限.【详解】由知:,在第三象限故选:【点睛】本题考查三角函数在各象限内的符号,属于基础题.2、C【解析】

根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率3、A【解析】

根据单位向量的定义即可求解.【详解】,向量的方向相反的单位向量为,故选A.【点睛】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.4、B【解析】

分别根据和的单调减区间即可得出答案.【详解】因为和的单调减区间分别是和,所以选择B【点睛】本题考查三角函数的单调性,意在考查学生对三角函数图像与性质掌握情况.5、C【解析】

利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.6、B【解析】

利用特殊角的三角函数值的符号得到点的坐标,直接判断点所在象限即可.【详解】,.在平面直角坐标系中位于第二象限.故选B.【点睛】本题考查了三角函数值的符号,考查了三角函数的诱导公式的应用,是基础题.7、B【解析】

利用不等式的性质,即可求解,得到答案.【详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】

由的范围求出的范围,结合余弦函数的性质即可求出函数的值域.【详解】∵,∴,∴当,即时,函数取最大值1,当即时,函数取最小值,即函数的值域为,故选A.【点睛】本题主要考查三角函数在给定区间内求函数的值域问题,通过自变量的范围求出整体的范围是解题的关键,属基础题.9、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.10、D【解析】试题分析:,知偶函数,,知非奇非偶,知偶函数,,知奇函数.考点:函数奇偶性定义.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

建立平面直角坐标系,得到相应点的坐标及向量的坐标,把,利用向量的数量积转化为的函数,即可求解.【详解】建立如图所示的平面直角坐标系,因为,,所以,因为,,所以,因为,所以当时,取得最大值,最大值为.故答案为:.【点睛】本题主要考查了平面向量的线性运算,以及向量的数量积的运算的应用,其中解答中建立平面直角坐标系,结合向量的线性运算和数量积的运算,得到的函数关系式是解答的关键,着重考查了推理与运算能力,属于中档试题.12、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.13、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.14、【解析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化为x2﹣2x+m=0,或x2﹣2x+n=0,设是第一个方程的根,代入方程即可求得m,则方程的另一个根可求;设另一个方程的根为s,t,(s≤t)根据韦达定理可知∴s+t=2根据等差中项的性质可知四个跟成的等差数列为,s,t,,进而根据数列的第一项和第四项求得公差,则s和t可求,进而根据韦达定理求得n,最后代入|m﹣n|即可.【详解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化为x2﹣2x+m=0①,或x2﹣2x+n=0②,设是方程①的根,则将代入方程①,可解得m,∴方程①的另一个根为.设方程②的另一个根为s,t,(s≤t)则由根与系数的关系知,s+t=2,st=n,又方程①的两根之和也是2,∴s+t由等差数列中的项的性质可知,此等差数列为,s,t,,公差为[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案为【点睛】本题主要考查了等差数列的性质.考查了学生创造性思维和解决问题的能力.15、【解析】所求的等比中项为:.16、【解析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【点睛】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。18、(1)或(2)【解析】

(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【点睛】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.19、(1)..(2),或.【解析】试题分析:(1)由三角函数图象与轴交于点可得,则.由最小正周期公式可得.(2)由题意结合中点坐标公式可得点的坐标为.代入三角函数式可得,结合角的范围求解三角方程可得,或.试题解析:(1)将代入函数中,得,因为,所以.由已知,且,得.(2)因为点是的中点,,所以点的坐标为.又因为点在的图象上,且,所以,且,从而得,或,即,或.20、(1)证明见解析(2)【解析】

(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.

(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】

(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则即,所以是锐角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面积为.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论