版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市东台三仓中学2025届高一下数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是()A.函数的最小正周期为B.函数的图象关于直线对称C.函数在区间上单调递增D.函数的图像关于点对称2.在中,角,,所对的边分别为,,,若,则最大角的余弦值为()A. B. C. D.3.甲、乙、丙三人随意坐下,乙不坐中间的概率为()A. B. C. D.4.=()A. B. C. D.5.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或76.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.7.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定8.已知函数,其图象与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.9.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,若向量,则把有序数对叫做向量在坐标系中的坐标.假设在坐标系中的坐标为,则()A. B. C. D.10.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.空间一点到坐标原点的距离是_______.12.已知,,若,则实数_______.13.等比数列的公比为,其各项和,则______________.14.函数的反函数的图象经过点,那么实数的值等于____________.15.方程的解集是______.16.已知直线与圆交于两点,若,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.18.在中,分别是角的对边.(1)求角的值;(2)若,且为锐角三角形,求的范围.19.已知函数的部分图象如图所示.(1)求与的值;(2)设的三个角、、所对的边依次为、、,如果,且,试求的取值范围;(3)求函数的最大值.20.求过点且与圆相切的直线方程.21.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
本题首先可根据相邻的两个对称中心之间的距离为来确定的值,然后根据直线是对称轴以及即可确定的值,解出函数的解析式之后,通过三角函数的性质求出最小正周期、对称轴、单调递增区间以及对称中心,即可得出结果.【详解】图像相邻的两个对称中心之间的距离为,即函数的周期为,由得,所以,又是一条对称轴,所以,,得,又,得,所以.最小正周期,项错误;令,,得对称轴方程为,,选项错误;由,,得单调递增区间为,,项中的区间对应,故正确;由,,得对称中心的坐标为,,选项错误,综上所述,故选C.【点睛】本题考查根据三角函数图像性质来求三角函数解析式以及根据三角函数解析式得出三角函数的相关性质,考查对函数的相关性质的理解,考查推理能力,是中档题.2、D【解析】
设,由余弦定理可求出.【详解】设,所以最大的角为,故选D.【点睛】本题主要考查了余弦定理,大边对大角,属于中档题.3、A【解析】甲、乙、丙三人随意坐下有种结果,乙坐中间则有,乙不坐中间有种情况,概率为,故选A.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.4、A【解析】
试题分析:由诱导公式,故选A.考点:诱导公式.5、A【解析】
根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.6、B【解析】
依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.7、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】由题意可得相邻最低点距离1个周期,,,,即,,即所以,包含0,所以k=0,,,,选A.【点睛】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.9、D【解析】
可得.【详解】向量,则.故选:.【点睛】本题主要考查了向量模的运算和向量的数量积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】
设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.12、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.13、【解析】
利用等比数列各项和公式可得出关于的方程,解出即可.【详解】由于等比数列的公比为,其各项和,可得,解得.故答案为:.【点睛】本题考查等比数列中基本量的计算,利用等比数列各项和公式列等式是关键,考查计算能力,属于基础题.14、【解析】
根据原函数与其反函数的图象关于直线对称,可得函数的图象经过点,由此列等式可得结果.【详解】因为函数的反函数的图象经过点,所以函数的图象经过点,所以,即,解得.故答案为:【点睛】本题考查了原函数与其反函数的图象的对称性,属于基础题.15、或【解析】
根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题16、【解析】
根据点到直线距离公式与圆的垂径定理求解.【详解】圆的圆心为,半径为,圆心到直线的距离:,由得,解得.【点睛】本题考查直线与圆的应用.此题也可联立圆与直线方程,消元后用弦长公式求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.18、(1);(2)【解析】
(1)由题结合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等变换得A的函数即可求范围【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵为锐角三角形,∴,则即,所以,即,综上的取值范围为.【点睛】本题考查正余弦定理解三角形,考查三角恒等变换,注意锐角三角形的应用,准确计算是关键,是中档题19、(1),;(2);(3).【解析】
(1)由图象有,可得的值,然后根据五点法作图可得,进而求出(2)根据,可得,然后由行列式求出,再由正弦定理转化为,根据的范围求出的范围(3)将化简到最简形式,然后逐步换元,转化为利用导数求值问题.【详解】(1)由函数图象可得,解得,再根据五点法作图可得,解得,.(2),由正弦定理知,,,,.(3)令,因为,所以,则,令,因为,所以,则令,则,只需求出的最大值,,令,则,当时,,此时单调递增,当时,,此时单调递减,.函数的最大值为.【点睛】本题主要考查了利用三角函数的部分图象求解析式和三角函数的图象与性质,考查了转化思想和数形结合思想,属于难题.20、直线方程为或【解析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州卫生职业技术学院《食用菌栽培技术》2023-2024学年第一学期期末试卷
- 2025湖南省安全员-C证考试题库
- 2025山东省安全员B证考试题库附答案
- 2025年湖北省建筑安全员知识题库
- 【语文课件】《我的信念》课件
- 《壶口瀑布》课件
- 单位管理制度展示选集【人员管理篇】
- 单位管理制度展示合集【职员管理】十篇
- 电力天然气周报:多省2025年长协电价落地11月我国天然气表观消费量同比下降0.3
- 2024年上海市县乡教师选调考试《教育学》真题汇编带解析含完整答案(各地真题)
- (精心整理)系动词练习题
- 婚恋观教育--保持军人本色树立正确婚恋观
- 体彩排列五历史数据
- 中国工业数据库介绍
- 弱电智能化设计服务建议书(共35页)
- 中国银监会关于规范中长期贷款还款方式的通知
- 通信工程外文文献(共12页)
- 汽车底盘维修实训考核表(共24页)
- 炼铁厂3#烧结主抽风机拆除安全专项方案
- 公司安全生产领导小组架构图模版(共1页)
- 初中英语语法课堂教学设计有效性的探讨
评论
0/150
提交评论