河北省保定一中2025届高一下数学期末达标检测模拟试题含解析_第1页
河北省保定一中2025届高一下数学期末达标检测模拟试题含解析_第2页
河北省保定一中2025届高一下数学期末达标检测模拟试题含解析_第3页
河北省保定一中2025届高一下数学期末达标检测模拟试题含解析_第4页
河北省保定一中2025届高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定一中2025届高一下数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或32.已知之间的几组数据如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.3.已知,,,若不等式恒成立,则t的最大值为()A.4 B.6 C.8 D.94.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.5.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.6.已知向量,则下列结论正确的是A. B. C.与垂直 D.7.在钝角中,角的对边分别是,若,则的面积为A. B. C. D.8.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2979.在数列中,若,,则()A. B. C. D.10.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点的个数是______.12.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________.13.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.14.(理)已知函数,若对恒成立,则的取值范围为.15.102,238的最大公约数是________.16.已知角α的终边与单位圆交于点.则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在平面直角坐标系中,角和的顶点与坐标原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于点、两点,点的纵坐标为.(Ⅰ)求的值;(Ⅱ)若,求的值.18.为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设屋子的左右两面墙的长度均为x米(3≤x≤6).(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为1800a(1+x)x元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a19.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.20.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.21.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据直线的平行关系,列方程解参数即可.【详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【点睛】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.2、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′3、C【解析】

因为不等式恒成立,所以只求得的最小值即可,结合,用“1”的代换求其最小值.【详解】因为,,,若不等式恒成立,令y=,当且仅当且即时,取等号所以所以故t的最大值为1.故选:C【点睛】本题主要考查不等式恒成立和基本不等式求最值,还考查了运算求解的能力,属于中档题.4、D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.5、A【解析】

根据题意,作出截面图,计算弧长即可.【详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【点睛】本题考查弧长的计算公式,二面角的定义,属综合基础题.6、C【解析】

可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.7、A【解析】

根据已知求出b的值,再求三角形的面积.【详解】在中,,由余弦定理得:,即,解得:或.∵是钝角三角形,∴(此时为直角三角形舍去).∴的面积为.故选A.【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】

根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.9、C【解析】

利用倒数法构造等差数列,求解通项公式后即可求解某一项的值.【详解】∵,∴,即,数列是首项为,公差为2的等差数列,∴,即,∴.故选C.【点睛】对于形如,可将其转化为的等差数列形式,然后根据等差数列去计算.10、C【解析】

求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【点睛】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.12、【解析】数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.13、【解析】

建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.14、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.16、【解析】

直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由题意知的值,可求得和的值,即得所求式子的值;(Ⅱ)由题意知的值,由的值求得的值.【详解】(Ⅰ)由题意可得,,∴(Ⅱ)因为即,∵,∴,∴∴【点睛】本题考查了平面向量的数量积计算问题,也考查了三角函数求值问题,是中档题18、(Ⅰ)4米时,28800元;(Ⅱ)0<a<12.25.【解析】

(Ⅰ)设甲工程队的总造价为y元,先求出函数的解析式,再利用基本不等式求函数的最值得解;(Ⅱ)由题意可得,1800(x+16x)+14400>从而(x+4)2【详解】(Ⅰ)设甲工程队的总造价为y元,则y=3(300×2x+400×1800(x+16当且仅当x=16x,即即当左右两侧墙的长度为4米时,甲工程队的报价最低为28800元.(Ⅱ)由题意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.19、(1);(2)4.【解析】

(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)1;(2)(3)见解析【解析】

(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是【点睛】本题考查函数的零点,考查不等式恒成立问题,考查解含参数的一元二次不等式.其中不等式恒成立问题可采用参数法转化为求函数的最值问题,而解一元二次不等式,必须对参数分类讨论,解题关键是确定分类标准.解一元二次不等式的分类标准有三个方面:一是二次的系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论