版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省浑源县第五中学校2025届高一数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三棱柱的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为()A.1 B.2 C. D.2.向量,,若,则()A.5 B. C. D.3.已知向量,且,则的值为()A.1 B.2 C. D.34.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.5.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.6.的值为()A. B. C. D.7.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.8.设集合,则元素个数为()A.1 B.2 C.3 D.49.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π10.函数的图像关于直线对称,则的最小值为()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列前9项的和等于前4项的和.若,则.12.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;13.对任意实数,不等式恒成立,则实数的取值范围是____.14.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____15.已知向量,则________16.已知,,若,则实数的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.18.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.19.已知(1)化简;(2)若,求的值.20.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.21.已知数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先证明棱柱为直棱柱,再求出棱柱外接球的半径,利用基本不等式求出其最小值.【详解】∵三棱柱内接于球,∴棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为,,∵三棱柱的高为2,体积是1,∴,即,将直三棱柱补成一个长方体,则直三棱柱与长方体有同一个外接球,所以球的半径为.故选D【点睛】本题主要考查几何体外接球的半径的计算和基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】
由已知等式求出,再根据模的坐标运算计算出模.【详解】由得,解得.∴,,.故选:A.【点睛】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.3、A【解析】
由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解.【详解】由题意可得,即.∴,故选A.【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切.4、C【解析】
先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.5、A【解析】
设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【点睛】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.6、C【解析】试题分析:.考点:诱导公式.7、D【解析】
由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.8、B【解析】
计算圆心到直线的距离,可知直线与圆相交,可得结果.【详解】由,圆心为,半径为1所以可知圆心到直线的距离为所以直线与圆相交,故可知元素个数为2故选:B【点睛】本题主要考查直线与圆的位置关系判断,属基础题.9、B【解析】
根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【点睛】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。10、C【解析】
的对称轴为,化简得到得到答案.【详解】对称轴为:当时,有最小值为故答案选C【点睛】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】
根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.12、【解析】
首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【点睛】本题简单考查了正余弦定理,考查计算能力,属于基础题型.13、【解析】
分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.14、【解析】
通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.15、2【解析】
由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.16、【解析】
利用共线向量等价条件列等式求出实数的值.【详解】,,且,,因此,,故答案为.【点睛】本题考查利用共线向量来求参数,解题时要充分利用共线向量坐标表示列等式求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.18、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】
(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.19、(1);(2)【解析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【详解】(1)(2)因为,所以,由于将代入,得【点睛】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.20、(1)见解析;(2).【解析】
(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵为的中点,为的中点,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)连结,交于点,连结,由对称性知,为的中点,且,.∵平面平面,,∴平面,,.以为坐标原点,的方向为轴正方向,建立空间直角坐标系.则(0,,0),(3,0,0),(0,0,1).易知平面的一个法向量为.设平面的法向量为,则,,∴,∵,,∴.令,得,∴,∴.设二面角的大小为,则.【点睛】本道题考查了平面与平面平行判定和性质,考查了空间向量数量积公式,关键建立空间坐标系,难度偏难.21、(1);(2).【解析】
(1)由递推公式,再递推一步,得,两式相减化简得,可以判断数列是等差数列,进而可以求出等差数列的通项公式;(2)根据(1)和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年分离纯化控制系统合作协议书
- 人教版 八年级英语下册 Unit 10 单元综合测试卷(2025年春)
- 人教版化学九年级上册第一单元《-走进化学世界》测试试题(含答案)
- 2025年产品买卖协议常用版(4篇)
- 2025年个人车辆出租合同常用版(4篇)
- 2025年代理进口合同标准范文(2篇)
- 2025年九年级年级组长管理工作总结(四篇)
- 2025年人防工程施工合同(三篇)
- 2025年个人股权的投资协议(三篇)
- 2025年九年级班主任年度期末工作总结模版(二篇)
- 上海市杨浦区2022届初三中考二模英语试卷+答案
- 高中英语原版小说整书阅读指导《奇迹男孩》(wonder)-Part one 讲义
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- 山东省中考物理总复习 八上 第1讲 机械运动
- 北京理工大学应用光学课件(大全)李林
- 国家综合性消防救援队伍消防员管理规定
- 河南省三门峡市各县区乡镇行政村村庄村名居民村民委员会明细
- 2023年全国各地高考英语试卷:完形填空汇编(9篇-含解析)
- 五年级上册数学习题课件 简便计算专项整理 苏教版 共21张
- 疼痛科的建立和建设
- 运动技能学习PPT课件
评论
0/150
提交评论