版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏回族自治区六盘山高级中学2025届高一数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.62.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1543.数列的通项,其前项和为,则为()A. B. C. D.4.在中,已知a,b,c分别为,,所对的边,且a,b,c成等差数列,,,则()A. B. C. D.5.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点,若函数的图象恰好经过个格点,则称函数为阶格点函数.下列函数中为一阶格点函数的是()A. B. C. D.7.在平行四边形ABCD中,若,则必有()A. B.或C.ABCD是矩形 D.ABCD是正方形8.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元9.已知等比数列满足,,则()A. B. C. D.10.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛 B.22斛C.36斛 D.66斛二、填空题:本大题共6小题,每小题5分,共30分。11.关于的方程只有一个实数根,则实数_____.12.若直线平分圆,则的值为________.13.已知等差数列的前项和为,若,则_______.14.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.15.函数的递增区间是__________.16.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.18.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点(1)当时,求的值;(2)设,求的取值范围.19.的内角的对边分别为,已知.(1)求;(2)若,求边上的高的长.20.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.21.在中,,且.(1)求边长;(2)求边上中线的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【详解】平均数,方差,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.2、B【解析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.3、A【解析】分析:利用二倍角的余弦公式化简得,根据周期公式求出周期为,从而可得结果.详解:首先对进行化简得,又由关于的取值表:123456可得的周期为,则可得,设,则,故选A.点睛:本题考查二倍角的余弦公式、三角函数的周期性以及等差数列的求和公式,意在考查灵活运用所学知识解决问题的能力以及计算能力,求求解过程要细心,注意避免计算错误.4、B【解析】
利用成等差数列可得,再利用余弦定理构造的结构再代入求得即可.【详解】由成等差数列可得,由余弦定理有,即,解得,即.故选:B【点睛】本题主要考查了等差中项与余弦定理的运算,需要根据题意构造与的结构代入求解.属于中档题.5、D【解析】略6、A【解析】
根据题意得,我们逐个分析四个选项中函数的格点个数,即可得到答案.【详解】根据题意得:函数y=sinx图象上只有(0,0)点横、纵坐标均为整数,故A为一阶格点函数;函数没有横、纵坐标均为整数,故B为零阶格点函数;函数y=lgx的图象有(1,0),(10,1),(100,2),…无数个点横、纵坐标均为整数,故C为无穷阶格点函数;函数y=x2的图象有…(﹣1,0),(0,0),(1,1),…无数个点横、纵坐标均为整数,故D为无穷阶格点函数.故选A.【点睛】本题考查的知识点是函数的图象与图象变化,其中分析出函数的格点个数是解答本题的关键,属于中档题.7、C【解析】
由,化简可得,得到,又由四边形为平行四边形,即可得到答案.【详解】由,则,即,化简可得,所以,即,又由四边形为平行四边形,所以该四边形为矩形,故选C.【点睛】本题主要考查了向量的基本运算,以及向量的垂直关系的应用,其中解答中熟记向量的基本运算,以及向量的垂直的判定是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】∵,∵数据的样本中心点在线性回归直线上,
回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,
∴广告费用为6万元时销售额为9.4×6+9.1=65.5,
故选B.9、C【解析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.10、B【解析】试题分析:设圆锥底面半径为r,则14×2×3r=8,所以r=163,所以米堆的体积为14考点:圆锥的性质与圆锥的体积公式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。12、1【解析】
把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【点睛】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题13、【解析】
先由题意,得到,求出,再由等差数列的性质,即可得出结果.【详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【点睛】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.14、9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.16、1【解析】
由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【点睛】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.18、(1);(2)【解析】
(1)由三角函数的定义得出,通过当时,,,进而求出的值;(2)利用三角恒等变换的公式化简得,得出,进而得到的取值范围.【详解】(1)由三角函数的定义,可得当时,,即,所以.(2)因为,所以,由三角恒等变换的公式,化简可得:,因为,所以,即的取值范围为.【点睛】本题主要考查了任意角的三角函数的定义,两角和与差的正、余弦函数的公式的应用,以及正弦函数的性质的应用,其中解答中熟记三角函数的定义与性质,以及两角和与差的三角函数的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)【解析】
(1)首先由正弦定理,我们可以将条件化成角度问题,再通过两角和差的正弦公式,即可以得出的正切值,又因为在三角形中,从而求出的值.(2)由第一问得出,我们能求出,而,从而求出.【详解】(1)根据题意因为,所以得,即所以,又因为所以.(2)因为所以又的面积为:可得:【点睛】解三角形题中,我们常根据边的齐次,会利用正弦定理进行边化角,然后通过恒等变形,变成角相关等量关系,作为面积问题,我们初中更多是用底与高的处理,高中能用正弦形式表示,两者统一一起,又能得出相应的等量关系.20、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园心理健康合同:校园心理健康服务承包协议
- 新疆维吾尔自治区劳动合同范本样本
- 山林承包合同使用指南
- 2024年范文生态园土地承包合同
- 2024试析《物业服务合同》的解除或终止问题
- 2024小吃加盟合同范本
- 物业管理服务协议参考样本
- 个人建房施工合同范本
- 2024广告设计类合同范本
- 解除版权买卖合同协议
- 2024年全国高考Ⅰ卷英语试题及答案
- 期刊编辑的学术期刊编辑规范考核试卷
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 电梯安全总监和安全员的任命文件
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
- 2024年安徽省普通高中学业水平选择性考试 历史试卷
- 电子商务师职业技能等级证书培训方案
- JBT 14615-2024 内燃机 活塞运动组件 清洁度限值及测定方法(正式版)
- DL5009.2-2013电力建设安全工作规程第2部分:电力线路
- 理智与情感:爱情的心理文化之旅智慧树知到期末考试答案章节答案2024年昆明理工大学
- GA/T 2097-2023执法办案管理场所信息应用技术要求
评论
0/150
提交评论