版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市蛟河市一中2025届数学高一下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.102.下列各角中,与126°角终边相同的角是()A. B. C. D.3.直线的倾斜角是()A. B. C. D.4.终边在轴上的角的集合()A. B.C. D.5.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是A.至少有一个黑球与都是黑球 B.至少有一个黑球与至少有一个白球C.恰好有一个黑球与恰好有两个黑球 D.至少有一个黑球与都是白球6.已知,且为第二象限角,则()A. B. C. D.7.已知,,,,那么()A. B. C. D.8.已知,,,,则下列等式一定成立的是()A. B. C. D.9.计算的值为().A. B. C. D.10.若某程序框图如图所示,则该程序运行后输出的值是()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数满足,则的最小值为__________.12.已知等差数列满足,则____________.13.已知,且,.则的值是________.14.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.15.实数2和8的等比中项是__________.16.已知则sin2x的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的公比为,是的前项和;(1)若,,求的值;(2)若,,有无最值?说明理由;(3)设,若首项和都是正整数,满足不等式,且对于任意正整数有成立,问:这样的数列有几个?18.四棱锥中,底面是边长为2的菱形,,是等边三角形,为的中点,.(Ⅰ)求证:;(Ⅱ)若,能否在棱上找到一点,使平面平面?若存在,求的长.19.已知时不等式恒成立,求实数的取值范围.20.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.21.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用勾股定理计算出球的半径.【详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【点睛】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.2、B【解析】
写出与126°的角终边相同的角的集合,取k=1得答案.【详解】解:与126°的角终边相同的角的集合为{α|α=126°+k•360°,k∈Z}.取k=1,可得α=486°.∴与126°的角终边相同的角是486°.故选B.【点睛】本题考查终边相同角的计算,是基础题.3、B【解析】
先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.4、D【解析】
根据轴线角的定义即可求解.【详解】A项,是终边在轴正半轴的角的集合;B项,是终边在轴的角的集合;C项,是终边在轴正半轴的角的集合;D项,是终边在轴的角的集合;综上,D正确.故选:D【点睛】本题主要考查了轴线角的判断,属于基础题.5、C【解析】
列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可【详解】对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A不正确对于B:事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,如:一个白球一个黑球,∴B不正确对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是白球,∴两个事件是互斥事件但不是对立事件,∴C正确对于D:事件:“至少有一个黑球”与“都是白球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴D不正确故选C.【点睛】本题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属简单题6、D【解析】
首先根据题意得到,,再计算即可.【详解】因为,且为第二象限角,,..故选:D【点睛】本题主要考查正切二倍角的计算,同时考查了三角函数的诱导公式和同角三角函数的关系,属于简单题.7、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.8、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.9、D【解析】
利用诱导公式以及特殊角的三角函数值可求出结果.【详解】由诱导公式可得,故选D.【点睛】本题考查诱导公式求值,解题时要熟练利用“奇变偶不变,符号看象限”基本原则加以理解,考查计算能力,属于基础题.10、C【解析】
根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】
由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.12、9【解析】
利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题13、2【解析】
.14、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.15、【解析】所求的等比中项为:.16、【解析】
利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【详解】解:∵,,则sin2x==,故答案为.【点睛】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),最小值,最大值;,最小值,无最大值;(3)个【解析】
(1)由,分类讨论,分别求得,结合极限的运算,即可求解;(2)由等比数列的前项和公式,求得,再分和两种情况讨论,即可求解,得到结论;(3)由不等式,求得,在由等比数列的前项和公式,得到,根据不等式成立,可得,结合数列的单调性,即可求解.【详解】(1)由题意,等比数列,且,①当时,可得,,所以,②当时,可得,所以,综上所述,当,时,.(2)由等比数列的前项和公式,可得,因为且,所以,①当时,单调递增,此时有最小值,无最大值;②当时,中,当为偶数时,单调递增,且;当为奇数时,单调递减,且;分析可得:有最大值,最小值为;综上述,①当时,的最小值为,最大值为;②当时,的最小值为,无最大值;(3)由不等式,可得,又由等比数列的前项和公式,可得,因为首项和都是正整数,所以,又由对于任意正整数有成立,可得,联立可得,设,由为正整数,可得单调递增,所以函数单调递减,所以,且所以,当时,,即,解得,此时有个,当时,,即,解得,此时有个,所以共有个.【点睛】本题主要考查了等比数列的前项和公式,数列的极限的计算,以及数列的单调性的综合应用,其中解答中熟记等比数列的前项和公式,极限的运算法则,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及分析问题和解答问题的能力,属于难题.18、(Ⅰ)见解析;(Ⅱ).【解析】
(Ⅰ)连接,根据三角形性质可得,由底面菱形的线段角度关系可证明,即证明平面,从而证明.(Ⅱ)易证平面平面,连接交于点,过作交于,即可证明平面,在三角形【详解】(Ⅰ)证明:连接,是等边三角形,为的中点,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面连接交于点,过作交于,如下图所示:所以平面,又平面所以平面平面因为,所以,即在等边三角形中,可得在菱形中,由余弦定理可得在中,可得所以【点睛】本题考查了直线与平面垂直的判定方法,平面与平面垂直的判定及性质的应用,余弦定理在解三角形中的用法,属于中档题.19、【解析】
讨论的取值范围,分别计算,最后得到答案.【详解】解:(1)当时,恒成立,符合题意(2)当时,不合题意舍去(3)当时,综上所述【点睛】本题考查了不等式恒成立问题,忽略二次系数为0的情况是容易发生的错误.20、(1);(2)存在,.【解析】
(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【点睛】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。21、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年食品安全合同书
- 2024影视道具租赁合同参考范本
- 工程承包合同示例文本
- 2024举办合同培训班的通知
- 2024年度销售合同智能家居产品销售合同(04版)
- 2024蔬菜超市采购合同
- 2024年度安全设备维护及更新改造合同
- 农村新建住宅协议书
- 2024天台县花生种植收购合同样书
- 2024工业生产厂房租赁合同范本
- 液化石油气充装操作规程(YSP118液化石油气钢瓶)
- 工程样板过程验收单
- 颅内动脉动脉瘤介入治疗临床路径
- 粮食仓储场建设项目可行性研究报告
- 珠宝销货登记表Excel模板
- 深基坑开挖施工风险源辨识与评价及应对措施
- 唯美手绘风花艺插花基础培训PPT模板课件
- 《现代汉语语法》PPT课件(完整版)
- 5G智慧农业建设方案
- 航海学天文定位第四篇天文航海第1、2章
- 浙江大学学生社团手册(08)
评论
0/150
提交评论