2025届云南省石林县民中数学高一下期末学业水平测试模拟试题含解析_第1页
2025届云南省石林县民中数学高一下期末学业水平测试模拟试题含解析_第2页
2025届云南省石林县民中数学高一下期末学业水平测试模拟试题含解析_第3页
2025届云南省石林县民中数学高一下期末学业水平测试模拟试题含解析_第4页
2025届云南省石林县民中数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省石林县民中数学高一下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对2.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.3.的值是()A. B. C. D.4.已知实数满足,那么的最小值为(

)A. B. C. D.5.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. B.C. D.6.在三棱锥中,已知所有棱长均为,是的中点,则异面直线与所成角的余弦值为()A. B. C. D.7.已知等差数列中,,则()A. B.C. D.8.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.49.某防疫站对学生进行身体健康调查,与采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人10.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个二、填空题:本大题共6小题,每小题5分,共30分。11.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.12.为等比数列,若,则_______.13.两圆交于点和,两圆的圆心都在直线上,则____________;14.设ω为正实数.若存在a、b(π≤a<b≤2π),使得15.向量满足:,与的夹角为,则=_____________;16.已知,,,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.18.我市某商场销售小饰品,已知小饰品的进价是每件3元,且日均销售量件与销售单价元可以用这一函数模型近似刻画.当销售单价为4元时,日均销售量为400件,当销售单价为8元时,日均销售量为240件.试求出该小饰品的日均销售利润的最大值及此时的销售单价.19.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.20.已知数列满足,数列满足,其中为的前项和,且(1)求数列和的通项公式(2)求数列的前项和.21.从两个班中各随机抽取10名学生,他们的数学成绩如下,通过作茎叶图,分析哪个班学生的数学学习情况更好一些.甲班76748296667678725268乙班86846276789282748885

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.2、C【解析】

根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.3、A【解析】由于==.故选A.4、A【解析】

表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.5、C【解析】

将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、A【解析】

取的中点,连接、,于是得到异面直线与所成的角为,然后计算出的三条边长,并利用余弦定理计算出,即可得出答案.【详解】如下图所示,取的中点,连接、,由于、分别为、的中点,则,且,所以,异面直线与所成的角为或其补角,三棱锥是边长为的正四面体,则、均是边长为的等边三角形,为的中点,则,且,同理可得,在中,由余弦定理得,因此,异面直线与所成角的余弦值为,故选A.【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下:(1)一作:平移直线,找出异面直线所成的角;(2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.7、C【解析】

,.故选C.8、D【解析】

利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.9、D【解析】由分层抽样的办法可知在名学生中抽取的男生有,故女生人数为,应选答案D.10、B【解析】

根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.12、【解析】

将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。13、【解析】

由圆的性质可知,直线与直线垂直,,直线的斜率,,解得.故填:3.【点睛】本题考查了相交圆的几何性质,和直线垂直的关系,考查数形结合的思想与计算能力,属于基础题.14、ω∈[【解析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解析】

根据模的计算公式可直接求解.【详解】故填:.【点睛】本题考查了平面向量模的求法,属于基础题型.16、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)递增区间为,(3)【解析】

(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【点睛】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,以及二次函数动轴定区间问题,属综合基础题.18、当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【解析】

根据已知条件,求出,利润,转化为求二次函数的最大值,即可求解.【详解】解:由题意,得解得所以日均销售量件与销售单价元的函数关系为.日均销售利润.当,即时,.所以当该小饰品销售单价定位8.5元时,日均销售利润的最大,为1210元.【点睛】本题考查函数实际应用问题,确定函数解析式是关键,考查二次函数的最值,属于基础题19、(1)1;(2)【解析】

(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【点睛】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.20、(1);(2)【解析】

(1)由题意可得,由等差数列的通项公式可得;由数列的递推式,结合等比数列的定义和通项公式可得;(2),运用数列的错位相减法求和,结合等比数列的求和公式可得所求和.【详解】解:(1)由,同乘以得,可知是以2为公差的等差数列,而,故;又,相减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论