版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲角平分线和垂直平分线1角平分线角平分线的性质1.角的平分线的性质定理
角的平分线上的点到这个角的两边的距离相等.
2.角的平分线的判定定理
角的内部到角的两边距离相等的点在角的平分线上.
3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.【例题精选】例1(2023秋•永城市期末)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40° B.34° C.36° D.38°例2(2023秋•定州市期末)如图,已知∠AOB=60°,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PO=6cm,则PD长的最小值是()A.7cm B.6cm C.5cm D.3cm【随堂练习】1.(2023秋•宜春期末)如图点O在△ABC内,且到三边的距离相等.若∠A=50°,则∠BOC等于()A.115° B.105° C.125° D.130°2.(2023秋•霸州市期末)如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于D.若OD=2,则△ABC的面积是()A.20 B.12 C.10 D.82垂直平分线线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;
性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【例题精选】例1(2023秋•来凤县期末)如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112°,则∠EAF为()A.38° B.40° C.42° D.44°例2(2023•西湖区模拟)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50° B.60° C.70° D.80°【随堂练习】1.(2023秋•涟源市期末)如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.132.(2023秋•东台市期末)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分 B.CD垂直平分AB C.AB垂直平分CD D.CD平分∠ACB综合练习一.选择题(共3小题)1.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD=16cm,AB=5cm,则线段BC的长度等于()A.8cm B.9cm C.10cm D.11cm2.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于D、E两点,∠B=60°,∠BAD=70°,则∠BAC的度数为()A.130° B.95° C.90° D.85°二.解答题1.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)2.如图,在△ABC中,已知∠C=90°,DE垂直平分AB,垂足为点E,交AC于点D,∠BDC=60°,AC=6,求AD的长度.3.如图,在△ABC中,∠B=45°,∠C=30°,作AC的中垂线交BC于E,连接AE,若AE=4,求BC的长.4.如图,C,D是AB的垂直平分线上两点,延长AC,DB交于点E,AF∥BC交DE于点F.求证:(1)AB是∠CAF的角平分线;(2)∠FAD=∠E.第3讲角平分线和垂直平分线1角平分线角平分线的性质1.角的平分线的性质定理
角的平分线上的点到这个角的两边的距离相等.
2.角的平分线的判定定理
角的内部到角的两边距离相等的点在角的平分线上.
3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.【例题精选】例1(2023秋•永城市期末)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40° B.34° C.36° D.38°分析:利用角平分线的性质定理的逆定理得到BD平分∠ABC,则∠EBD=∠CBD=26°,然后利用互余计算∠A的度数.【解答】解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.例2(2023秋•定州市期末)如图,已知∠AOB=60°,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PO=6cm,则PD长的最小值是()A.7cm B.6cm C.5cm D.3cm分析:作PH⊥OB于H,如图,根据角平分线的性质得到PC=PH,∠AOP=∠AOB=30°,则根据含30度的直角三角形三边的关系得到PC=3,则PH=3,然后根据垂线段最短求解.【解答】解:作PH⊥OB于H,如图,∵OP平分∠AOB,∴PC=PH,∠AOP=∠AOB=30°,在Rt△OPC中,PC=OP=3,∴PH=3,∴PD长的最小值为3cm.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.【随堂练习】1.(2023秋•宜春期末)如图点O在△ABC内,且到三边的距离相等.若∠A=50°,则∠BOC等于()A.115° B.105° C.125° D.130°【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O为△ABC的内角平分线的交点,即OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB),而∠ABC+∠ACB=180°﹣∠A,∴∠BOC=180°﹣(180°﹣∠A)=90°+∠A=90°+×50°=115°.故选:A.2.(2023秋•霸州市期末)如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于D.若OD=2,则△ABC的面积是()A.20 B.12 C.10 D.8【解答】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵O为∠ABC与∠ACB的平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=2,∴△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积=×(AB+BC+AC)×OD=×10×2=10,故选:C.2垂直平分线线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;
性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【例题精选】例1(2023秋•来凤县期末)如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112°,则∠EAF为()A.38° B.40° C.42° D.44°分析:根据三角形内角和定理求出∠C+∠B=68°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.【解答】解:∵∠BAC=112°,∴∠C+∠B=68°,∵EG、FH分别为AB、AC的垂直平分线,∴EB=EA,FC=FA,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=68°,∴∠EAF=44°,故选:D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.例2(2023•西湖区模拟)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50° B.60° C.70° D.80°分析:根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【解答】解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:C.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.【随堂练习】1.(2023秋•涟源市期末)如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.13【解答】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.2.(2023秋•东台市期末)如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分 B.CD垂直平分AB C.AB垂直平分CD D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴AB是线段CD的垂直平分线,故选:C.综合练习一.选择题(共3小题)1.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD=16cm,AB=5cm,则线段BC的长度等于()A.8cm B.9cm C.10cm D.11cm【解答】解:∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+B,∵C△ABD=16cm,AB=5cm,∴BC=11cm,故选:D.2.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于D、E两点,∠B=60°,∠BAD=70°,则∠BAC的度数为()A.130° B.95° C.90° D.85°【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C,∵∠B=60°,∠BAD=70°,∴∠BDA=50°,∴∠DAC=∠BDA=25°,∴∠BAC=∠BAD+∠DAC=70°+25°=95°故选:B.二.解答题1.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.2.如图,在△ABC中,已知∠C=90°,DE垂直平分AB,垂足为点E,交AC于点D,∠BDC=60°,AC=6,求AD的长度.【解答】解:∵DE垂直平分AB,∴DA=DB,∵∠C=90°,∠BDC=60°,∴∠CBD=30°,∴CD=BD,∴CD=AD,∵AC=6,∴AD=4.3.如图,在△ABC中,∠B=45°,∠C=30°,作AC的中垂线交BC于E,连接AE,若AE=4,求BC的长.【解答】解:如图,作AM⊥BC于M.∵AC的中垂线交BC于E,∴EA=EC,∴∠C=∠EAC=30°,∴∠AEM=∠EAC+∠C=60°,∵∠AME=90°,AE=EC=4,∠MAE=30°,∴EMAE=2,AM=2,∵∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (景观设计师)临时工劳动合同
- 公司对公司的借款合同范本
- 采石场转让合同
- 工程预付款协议书
- 国际贸易采购合同范本内容
- 专题21圆(全章知识梳理与考点分类讲解)-2023-2024学年九年级数学下册全章复习与专题突破讲与练
- 黑龙江省哈尔滨市师大附中2023级高二上学期10月阶段性考试历史试卷
- 工程项目合同管理(S)
- 陕西省咸阳市2017-2018学年高一上学期期末考试语文试题
- 工程项目档案审计方案
- 2024年领导干部任前廉政知识测试试卷题库及答案
- 2024年新华师大版七年级上册数学全册课件(新版教材)
- 江苏省泰兴市2024年中考一模语文试卷(含答案)
- 智慧呼叫中心BPO解决方案
- 2024年物联网安装调试员职业技能竞赛考试题库500题(含答案)
- 2024-2030年中国玻尿酸行业竞争策略与消费动态分析研究报告
- JGJT299-2013 建筑防水工程现场检测技术规范
- DL∕T 974-2018 带电作业用工具库房
- 箱式变电站技术规范书
- 台东山煤矿联合试运转方案
- 技能成才强国有我课件模板
评论
0/150
提交评论