加速度教案5篇_第1页
加速度教案5篇_第2页
加速度教案5篇_第3页
加速度教案5篇_第4页
加速度教案5篇_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

加速度教案5篇向心加速度教学设计篇一向心加速度教学设计一、教学目标1.知识目标(1)理解向心加速度的概念;知道匀速圆周运动中产生向心加速度的原因;(2)知道在变速圆周运动中,可用公式求质点在圆周上某一点的向心加速度。2.能力目标(1)理解向心加速度公式的确切含义,并能用来进行计算;(2)懂得物理学中常用的研究方法,培养学生的学习能力和研究能力。3.德育目标通过a与r及ω、v之间的关系,使学生明确任何一个结论都有其成立的条件。二、教学重点、难点分析1.重点:向心加速度的概念。知道加速度的大小a=rω2=v2/r,并能用来进行计算。2.难点:匀速圆周运动的向心加速度都是大小不变,方向在时刻改变。三、教学策略讲授法、归纳法、推理法。三、教学建议1教材处理1)重点理解向心加速度的观念,明确它的意义、作用、公式及其变形.2)难点运用向心加速度知识解释有关现象,解释有关问题.3)疑点l向心加速度起什么作用?l怎样进行多因素影响的分析?(控制变量法,可以略讲)4)解决办法l充分利用实验说明问题l充分利用推理说明问题5)栏目处理意见l48页的“思考与讨论”可作为本章的引入,l50页的“思考与讨论”是本节的难点,不作为重点,引导用极限思想进行处理。l51页“做一做”是一个没有实验的探究活动,它给出了提示,让学生自己尝试去做。2•学生学习指导(1)向心加速度概念的建立首先要领会它的方向指向圆心,可以用动力学的观点进行理解,但要建立科学的思维方法。(2)引导学生去网站查阅向心加速度的几种推导方法或老师给向心加速度推导方法的资料,指导他们学习和领会。3学习资源l人民教育出版社教材《必修2》l向心力演示器影视四、教学过程设计1引言圆周运动是变速运动,所以一定受力的作用,因此会产生加速度,本节我们探讨匀速圆周运动的加速度。分组讨论“思考与讨论”的问题2速度变化量首先介绍匀速直线运动的速度改变,在介绍匀速圆周运动的速度改变。3向心加速度方向:利用动画《圆周运动的加速度》动态演示加速度的方向,体会极限的思想推导:结合《做一做》分组推导由于三角形AoB与矢量三角形相似,所以可以由此推导出加速度的根据的关系,向心加速度有如下的计算公式:当线速度v一定时,向心加速度与半径成反比,当角速度w一定时,向心加速度与半径成正比。_加速度教学设计篇二2024214183李珊加速度教学设计一,教学目标1.知识与技能(1)理解加速度的定义;(2)明确加速度的矢量性,知道如何推导出速度时间公式;(3)掌握和加速度有关的计算,会用加速度的原理分析实际问题。2.过程与方法(1)通过观察认识与加速度有关的生活现象,培养学生用理论解释生活现象的能力,激发求知欲。(2)通过课堂上的打点计时器的实验,培养学生合作探究的精神,使学生亲历科学探究过程,学习科学探究的方法,培养学习兴趣。(3)通过对图像的分析,培养学生应用数学工具解决物理问题的能力与分析数据的能力。3.情感态度价值观(1)知道物理知识与生活的联系,提高运用所学知识综合分析解决问题的能力(2)领会人类探索自然规律中严谨的科学态度,理解加速度概念的建立对人类认识世界的意义,培养学生区分事物的能力及学生的抽象思维能力.二,教学方法讲授法实验法探究法练习法三,教学过程1,新课引入(5min)(1)播放视频:1,赛车启动过程2,猎豹追赶羚羊过程3,博尔特起跑过程教师:同学们注意观察赛车速度变化学生:注意观察设计意图:感性上认识加速度(2)总结视频中速度变化师:很明显,几个运动物体速度的增加量不同,速度增加的快慢也不同,且速度增加大的不一定就增加得快.为了描述物体运动中速度变化的快慢,人们引入了加速度的概念——加速度是用来描述速度变化的快慢的物理量.板书:速度变化快慢的描述——加速度2,新课教学(30min)(1)演示实验(5min):教师演示小车在斜面上下滑过程并用打点计时器打出纸带教师:让同学配合读数,将数据输入电脑,做成V-t图像学生:注意读数的准确性,将图像与数学知识联系起来教师:引导学生分析图像的特点与一次函数联系起来(2)课堂练习(5min)教师:让学生根据数据接触函数图像的解析式学生:认真求解教师:分析图像的截距与斜率的意义设计意图:通过数据分析,将感性认识上升为理性认识(3)提出概念(5min)1.物理意义:加速度是表示速度改变快慢的物理量.师:速度变化快慢也就是速度变化率,请同学们阅读课本P28“科学漫步”第一、二节。指导学生带问题阅读教材:1.什么是变化率?2.某个量D的变化率(变化快慢)应如何表示?2.定义:加速度等于速度的改变量跟发生这一改变所用时间的比值.vat定义式(4)加速度矢量性的引入教师:△v是速度变化,△t为完成此速度变化所需时间.△v=v2—v1.若速度v1、v2方向相同,且为正方向,△v>0表示加速直线运动;△v<0表示减速直线运动。学生:联系刚才的图像思考加速度为正或者为负时图像的不同(5)结合速度的单位以及加速度的定义式给出加速度的单位板书:国际单位:m/s2或m·s-2.读作米每二次方秒。师生共同讨论:加速度分为平均加速度和瞬时加速度.平均加速度指物体在一段时间内加速度,瞬时加速度指物体在某个时刻或经过某个位置的加速度.(6)课堂巩固讨论下列说法是否正确?举例说明.1.速度大,加速度一定大;2.速度变化大,加速度一定大;3.加速度为零,速度一定为零.生:速度大的匀速直线运动,速度变化为零,加速度为零,所以速度大,加速度不一定大,反之,对于从静止开始加速度的物体,开始短时间内,尽管加速度大,但速度不大.速度变化大,如果经过时间很长,加速度可能很小;反之,加速度大,是指速度变化快,如果时间很短,速度变化不一定大.加速度为零,可以是匀速直线运动,速度不一定为零;反之,速度为零,加速度不一定为零,如从静止开始做加速直线运动的物体,初始时刻,速度为零,加速度为零就不可能加速.师:能否从以上讨论中总结出速度、速度变化、加速度之间有没有必然的联系?生:没有必然的联系.板书:速度、速度变化、加速度之间没有必然的联系3,从图像看加速度教师:请同学分析图像1的运动过程学生:运用所学的加速度的有关知识分析出加速,匀速到减速的过程教师:让学生说出图像2中两条直线的差异学生:理解斜率代表加速度四,小结扩展:1.什么叫加速度?它的定义式、物理意义、单位各是什么?2.怎样正确理解加速度?加速度与速度间有什么关系?3.速度的改变量是否总是速度增加?怎样理解加速度的正负号.4.根据v—t图像怎样求加速度?5.怎样根据加速度的大小和方向去判定物体的运动规律?五,课后作业至少用三种不同的方法推导出速度时间图像(提示:根据加速度的定义与图像)《加速度》教学设计篇三《速度变化快慢的描述——加速度》教学设计教学目标:(一)知识与技能1、理解加速度的意义,知道加速度是表示速度变化快慢的物理量。知道它的定义、公式、符号和单位,能用公式a=△v/△t进行定量计算。2、知道加速度与速度的区别和联系,会根据加速度与速度的方向关系判断物体是加速运动还是减速运动。3、理解匀变速直线运动的含义,能从匀变速直线运动的v—t图象理解加速度的意义。(二)过程与方法1、经历将生活中的实际上升到物理概念的过程,理解物理与生活的联系,初步了解如何描述运动。通过事例,引出生活中物体运动的速度存在加速和减速的现实,提出为了描述物体运动速度变化的快慢,引入了加速度概念的必要性,激发学生学习的兴趣。2、帮助学生学会分析数据,归纳总结得出加速度。3、教学中从速度一时间图象的角度看物体的加速度,主要引导学生看倾斜直线的“陡度”(即斜率),让学生在实践中学会应用数据求加速度。(三)情感态度与价值观1、利用实例动画激发学生的求知欲,激励其探索的精神。2、领会人类探索自然规律中严谨的科学态度,理解加速度概念的建立对人类认识世界的意义,培养学生区分事物的能力及学生的抽象思维能力。3、培养合作交流的思想,能主动与他人合作,勇于发表自己的主张,勇于放弃自己的错观点。教学重点:1、加速度的概念建立和加速度与匀变速直线运动的关系。2、加速度是速度的变化率,它描述速度变化的快慢和方向。教学难点:1、理解加速度的概念,树立变化率的思想。2、区分速度、速度的变化量及速度的变化率。3、利用图象来分析加速度的相关问题。教学方法:探究、讲授、讨论、练习教学用具:多媒体课件,带滑轮的长木板、小车及砝码等。教学过程:(一)新课引入演示:让小球分别在倾角较小的斜面和倾角较大的斜面上滚动。提问:小球两次各做什么运动?它们的不同之处在哪里?得出:小球两次都是做速度越来越快的直线运动,但后一次速度改变得快。那么怎样比较速度改变的快慢呢?讨论:速度改变快慢的比较师:为了描述物体运动中速度变化的快慢,人们引入了加速度的概念——加速度是用来描述速度变化的快慢的物理量(二)新课教学1、加速度师:请回忆一下我们是怎样描述物体运动位置的变化的?例如在直线运动中,物体从A点运动到B点。建立数轴AB,设A点在数轴上的读数x1(一维位置坐标,下同)为2m,B点在数轴上的读数x2为7m,则物体运动位置的变化大小为多少?生:△x=x2一xl=7m一2m=5m,方向由A指向B。师:如果物体从A到B是做匀速运动,如果所用时间为t=10s,怎样求这段过程中物体的速度?生:物体运动的速度v=△x/△t=5m/10s=0.5m/s,方向从A指向B。师:如果物体做加速直线运动,同样在10s内,速度从2m/s增加到7m/s,怎样描述物体运动的速度增加的快慢呢?生:用物体速度的增加量除以所用的时间来描述这段过程中物体运动速度增加的快慢。师:如果用a符号表示物体速度增加的快慢,△v表示物体的速度变化量,△t表示物体的速度变化所用的时间,那么用公式如何表达呢?生:a=△v/△t=(7-2)m/10s2=0.5m/s2师:不同物体的运动,速度变化的快慢往往是不同的,再看下面的例子。案例1:飞机的速度由0增加到约300km/h,飞机的速度的变化是多少?若发生这一变化用时约30s,则物体的速度平均每秒增加多少?案例2:迫击炮射击时,炮弹在炮筒中的速度在0.005s内就可以由0增加到250m/s,炮弹速度的变化与发生这个变化所用时间的比值是多少?学生讨论后回答。生1(回答第一个案例):300km/h约相当于83m/s,a=△v/△t=(83—0)/30m/s2=2.8m/s2。生2(回答第二个案例):a=△v/△t=(250—0)/0.005m/s2=5×104m/s2师:上述方法就是变速直线运动中,描述物体运动速度变化快慢的基本思路和基本方法。其中a=△v/△t是变速直线运动的加速度的基本定义式。加速度(1)定义:加速度等于速度的改变量跟发生这一改变所用时间的比值。定义式:a=△v/△t=(vt-v0)/△tv0——开始时刻物体的速度vt——经过一段时间t时的速度(2)物理意义:加速度是表示速度改变快慢的物理量。(3)国际单位:m/s2或m·s-2读作米每二次方秒(4)加速度也是矢量,不仅有大小,也有方向。[问]用两辆汽车以相同的速度变化率做匀加速运动和匀减速运动,虽然速度变化快慢相同,但速度的变化情况不同,前者速度越来越大,后者则反之。启发学生思考,只凭速度变化快慢(速度变化率的大小)不能完全反映速度变化的规律,从而引出加速度不仅有大小,而且有方向,是矢量。(4)方向加速度的方向和速度改变量的方向相同加速度定义公式中时间△t是标量,是没有方向的,因此加速度a的方向跟速度改变量△v的方向相同,对做直线运动的物体,加速度的方向与初速度v0的方向相同或相反,若取v0的方向为正方向,则a的方向可用正负号来表示。因此:加速度的方向和速度改变量的方向相同加速直线运动:加速度的方向和初速度的方向相同,为正值。减速直线运动:加速度的方向和初速度的方向相反,为负值。分析:当物体加速时,则△v=(vt-v0)>0,时间△t是标量,加速度a的计算值为正值,如果以初速度的方向为正方向(即初速度v0取正值),a为正值则可表示a的方向与初速度的方向相同,或反过来说,若加速度a与初速度同向时,则这个直线运动为加速运动。当物体是减速时,则△v=(vt-v0)阅读课文,说说什么是匀变速运动生:如果物体的加速度保持不变,该物体的运动就是匀变速运动师:如同平均速度与瞬时速度那样,加速度也有平均和瞬时之分。在匀变速运动中,平均加速度与瞬时加速度有什么关系?生:在匀变速运动中,其速度随时间均匀变化(增加或减少),每时每刻的加速度,即瞬时加速度与一段时间内的加速度,即平均加速度相同。师:匀速直线运动可看成什么运动?生:可看成加速度为零的匀变速运动。讨论与交流:师:“上海磁悬浮列车的最高速度可达430km/h,它的加速度一定很大。”这一说法对吗?为什么?生:不对,当匀速运动时,尽管速度很大,加速度可以为零。师:运载火箭在点火后的短时间内,速度的变化很小,它的加速度一定很小吗?生:不对。由公式a=△v/△t可知,加速度等于速度的变化量和时间的比值,因而加速度是速度对时间的变化率。所谓某一个量对时间的变化率,是指单位时间内该量变化的数值。变化率表示变化的快慢,不表示变化的大小。说一说:日常生活中,对于运动物体说它走多远,是指路程或位移,说它走得多快,是指速度,而对加速度则没有相对应的典型词语。一般只有笼统的“快”和“慢”,往往指的是速度,但有时也有一些说法是模模糊糊地指加速度。请大家讨论哪些说法中指的是加速度?生1:汽车的加速性能是汽车的一个很重要的参数,有人说,我这车好,启动快。生2:在百米赛跑中,我们常说某某同学素质好,有很好的爆发力,起跑快。师:请学生阅读教材第30页“一些运动物体的加速度”。学生阅读“一些运动物体的加速度”后应注意:1。注意标题后括号内标明的“a/(m·s-2)”的含义,注意养成时时关心物理单位的习惯。2。阅读汽车、电车、旅客列车、炮弹加速时的典型值,形成大小印象。3。表中汽车急刹车时的加速度值为负值,这是什么含义?这是因为加速度是矢量,不但有大小,而且有方向,而负号只表示其方向,不表示其大小。师:加速度大小反映了什么?加速度的方向一定跟什么方向相同?生:加速度大小反映了物体速度改变的快慢,加速度越大,速度改变得越快,加速度越小,速度改变得越慢。加速度的方向跟速度改变的方向总是相同。师:加速度跟速度是否有关?生:加速度和速度是两个完全不同的物理量,加速度反映了物体速度改变的快慢,而速度反映了物体运动的快慢。不能根据加速度大小,判断物体运动快慢(速度大小),也不能根据速度大小判断速度改变的快慢(加速度大小),同样不能根据加速度方向判断物体的运动方向(速度方向),也不能根据速度方向判断物体速度改变的方向(加速度方向)。师:物体做匀加速直线运动时,加速度一定为正吗?物体做匀减速直线运动时,加速度一定为负吗?生:不一定。物体做匀加速直线运动时,加速度方向一定跟物体的运动方向相同,物体做匀减速直线运动时,加速度的方向跟物体的运动方向相反。但是,加速度是正值还是负值,与正方向的选取有关,若取运动方向为正方向,则匀加速直线运动的加速度为正值,匀减速直线运动的加速度为负值;若取运动的反方向为正方向,则匀加速直线运动的加速度为负值,匀减速直线运动的加速度为正值。师:加速度增加的运动是加速运动,加速度减小的运动是减速运动。这种认识对吗?如果不对,你认为应该怎样根据加速度判断物体的速度是增加还是减小?生:不对。加速度的大小反映的是速度变化的快慢,并不能反映速度的大小。应该根据加速度的方向和速度方向的关系,判断速度增加还是减小。只要加速度方向跟速度方向相同,无论加速度大小如何变化,物体一定做加速运动;只要加速度方向跟速度方向相反,无论加速度大小如何变化,物体一定做减速运动。师:速度、速度变化量及加速度有何区别?生:速度是用来表示物体运动快慢的物理量,它等于位移和所用时间的比值,而加速度是用来表示物体的速度变化快慢的物理量,它等于速度的变化量和时间的比值(速度的变化率)。加速度的大小只反映物体速度变化的快慢,不能反映物体运动的快慢,加速度大说明物体速度变化得快,并不意味着物体就运动得快;加速度小说明物体速度变化得慢,并不意味着物体运动得慢;加速度为零,说明物体速度不变化,但并不意味着物体的速度为零,物体可能以很大的速度做匀速直线运动。不仅速度大小和加速度大小没有必然联系,速度方向和加速度方向也没有必然联系。加速度方向与速度方向可能相同,也可能不相同。对于速度的变化量和加速度的区别,可根据加速度的定义a=△v/△t来理解,加速度是速度的变化率,而不是速度的变化量,加速度表示的是速度变化的快慢,而不是速度变化的多少,速度的变化量不仅与加速度有关,还与时间有关。因此,根据加速度不能判断速度变化的量的大小,反过来,根据速度变化量的大小也不能判断加速度的大小。师:加速度和速度的区别:(1)速度大,加速度不一定大;加速度大,速度不一定大。(2)速度变化量大,加速度不一定大。(3)加速度为零,速度可以不为零;速度为零,加速度可以不为零。例题剖析:例题1做匀加速运动的火车,在40s内速度从10m/s增加到20m/s,求火车加速度的大小。汽车紧急刹车时做匀减速运动,在2s内速度从10m/s减小到零,求汽车的加速度大小。(例题2判断下列说法是否正确。①做匀变速直线运动的物体,它的加速度方向和速度方向总是相同。错。只有做匀加速直线运动的物体,它的加速度方向和速度方向相同。②做匀变速直线运动的物体,它的速度变化越大,加速度越大。错。速度变化大,但不知所用时间的多少。③做匀变速直线运动的物体,它的速度变化越快,加速度越大。对。2、从v—t图象看加速度师:速度-时间图象描述了什么问题?怎样建立速度-时间图象?生:速度-时间图象是描述速度随时间变化关系的图象,它以时间轴为横轴,以纵轴为速度轴,在坐标系中将不同时刻的速度以坐标的形式描点,然后连线,就画出了速度-时间图象。思考与讨论:教材图1.5—3中两条直线a、b分别是两个物体运动的速度一时间图象,哪个物体运动的加速度比较大?教师引导,学生讨论后回答。生:a直线的倾斜程度更厉害,也就是更陡些,而b相对较平缓。所以a的速度变化快,即a的加速度大,b的速度变化慢,加速度小。师:我们可以从直线上任意选择间隔较大的两点来找到这两个点间的速度变化量△v,时间间隔△t。生:这样就可以定量求加速度了,用加速度的定义式a=△v/△t(2)在v—t图象中,图象的斜率在数值上等于加速度。匀变速直线运动的v—t图象是一条直线,直线的斜率的数值等于其加速度。总结、扩展:1。什么叫加速度?它的定义式、物理意义、单位各是什么?2。怎样正确理解加速度?加速度与速度间有什么关系?3。速度的改变量是否总是速度增加?怎样理解加速度的正负号。4。根据v-t图象怎样求加速度?5。怎样根据加速度的大小和方向去判定物体的运动规律?作业:问题与练习加速度教案范文篇四关键词:隐喻;类比;中学物理;妙用中图分类号:G633.7文献标识码:A文章编号:1992-7711(2024)02-0098所谓的隐喻与类比就是通过一件事物去形象地理解另一件事物,通过这类方法可促进学生在原有认知基础上进行知识的同化与顺应。以下是笔者在教学中碰到的一些真实的教学案例。案例1:在力的合成与分解教学中,关于合力与分力不能同时存在的问题,笔者在向学生强调了合力与分力具有等效替代作用基础上,打了个比方,教师晚自修值班,临时有事,委托另一教师代岗,那么就值班这件事来说,前一教师与后一教师是等效可替代的,前一个下岗后一个上岗,合力与分力一样,在力的分解时,用分力来等效替代合力,分力上岗,合力下岗,合力与分力不能同时存在。学生在一笑中马上领会。案例2:在必修一第二章匀速运动教学中,选择题常会出现这样的选项:加速度减小,而物体的速度仍然增大,许多学生往往视之为错项,当你问什么时候加速什么时候减速,学生会异口同声回答,a与v同向时加速a与v反向时减速,但当你解释a与v同向时,虽然a减小,v仍增大,进而再追加一句这是加速度减小的加速运动,学生虽表面上接受,但心里还是很嘀咕:怎么是加速度减小的加速运动?过不了多久,再出现同样的题目,他照样按照自己原有的某种理解方式判断失误,后来我把加速度减小的加速运动(a与v同向)类比为每月到银行存钱的数目(加速度)逐步减小,帐户里的钱总数(速度)在增加,把加速度增大的减速运动(a与v反向)类比为每月到银行取钱的数目(加速度)逐步增大,帐户里的钱总数(速度)在减小,学生心领神会。案例3:在恒定电流教学中碰到串联电阻分压并联电阻分流时,教师起先必需带动学生推导出分压公式与分流公式,如下图图1的分压公式为U1=■UU2=■U图2的分流公式I1=■II2=■I笔者对分流公式作了以下类比,好比一大群人面对一条阳光大道、一条羊肠小道时,因阳光大道阻碍少,走的人(分流的人)多,羊肠小道因阻碍大,选择走的人(分流的人)少,学生很容易记住电阻大的支路分到的电流少,电阻小的支路分到的电流大,对利用分压公式在进行解题说明时,笔者又比作几个人合伙做生意赚到钱按投资比例分配,若R1=484欧姆,R2=121欧姆,则R1∶R2=4∶1,总电压U比作赚到的钱,相当于把“钱”总数分成5份(4+1),R1占到4份,R2占到1份,所以R1分到电压为■U,R2分到的电压为■U,若再串联一个电阻R3,如图为则比例为R1∶R2∶R3,相当于总数分成(R1+R2+R3)份,电阻R1占到R1份,则UR1=■U,UR2=■U,UR3=■U,这种分压思想便很容易在学生脑中建立,一旦形成,不但对于学生计算起到简化作用,而且在后续电压表的改装及扩程学习中可起到很好作用,甚至在电路的动态分析中照样可起到简化快速作用。这种隐喻类比思想在研究解决双星系统中行星距离中心点也起到很好效果,如图所示,两颗靠得很近的天体称为双星,它们以两者连线上某点为圆心作匀速圆周运动,这样就不至于由于万有引力而吸引在一起,设两双星质量分别为m和M,两星间距为L,在相互万有引力的作用下,绕它们连线上某点O转动,问它们的轨道半径r1、r2之比是否为它们的质量之反比,及r1、r2分别为多少。解题过程如下:■=Mω2r1■=Mω2r2Mω2r1=Mω2r2Mr1=Mr2■=■,再问r1=?r2=?学生可不会很快得出答案,只要教师再点拨类比“投资比例分配”思想,因r1∶r2=m∶M,又r1+r2=L,相当于把L分成(m+M)份,所以r1分到■L,r2分到■L。以后类似的计算学生很快得出答案。案例4:在匀变速直线运动中,利用纸带求物体速度及加速度时,教师常会介绍逐差法求a,如x5-x1=4aT2,学生会反应不过来,这时教师类比,按顺序指了班中八个学生,假如第二个学生比第一个多二元钱,第三个比第二个多二元钱,依次如下,问学生第三个比第一个多几倍二元钱,第四个比第一个呢,第五个比第一个呢,学生很快得出答案,再反过来问X5比X1多几倍aT2,学生欣然得出答案4aT2,再提示以后看下标,下标5减去下标1等于4。案例5:在热学教学中常会碰到利用阿伏加德罗常数进行微量估算,例如这类题:已知铜的密度为8.9×103kg/m3,原子量为64,通过估算可知铜中每个铜原子所占的体积为多少?也就是由宏观量求微观量的质量、体积、直径、个数等,中间联系的桥梁是阿伏加德罗常数,思路是很单一的,但是许多学生竟然特别害怕这类题目,很是让人惊讶,作为物理教师的笔者在感叹这类学生思维能力的如此缺憾之余,不得不另辟蹊径。笔者让高中生先做小学题:一箱苹果总质量为M,总体积为V,苹果个数为n个,则每个苹果的质量,所占的体积分别多少?然后再问知道一摩尔质量一摩尔体积,而一摩尔分子个数为阿伏加德罗常数NA=6.02×1023/mol,则每个分子所占的体积、质量为多少?其别强调一摩尔相当于一箱,摩尔体积相当于一箱总体积,摩尔质量相当于一箱总质量,一个分子相当于一个苹果,引导学生进行这种简单的思维转移与类比,非常有效,并激发了学生信心:什么问题啊――一箱苹果问题。后来学生就把此类问题叫做“一箱苹果”。又如油膜法测分子直径问题时就一个公式:d=V/S,而学生也总是这会儿记对了一会儿又记成d=S/V,上课时用类比法,如右图:桶内水体积为V,水桶底面积为S,则这桶水高度为多少?所有学生都知道h=v/s,再紧接着问现在把一滴体积为V的油酸尽可能在水面上扩散形成单分子层油膜,油膜面积为S,则这层油膜厚度也应该为h=v/s,这个厚度h=油膜直径d,学生一般都会听懂,而且记得住案例6:在学生对物体静止状态是平衡状态与物体瞬时速度为零是否为平衡状态,如小球上升到最高点速度为零,学生总认为速度为零即静止状态为平衡状态,这时候教师采用隐喻教学,最高点速度为零为“曾经拥有”,静止为天长地久,学生会心地笑……案例7:在变压器教学时,我们会得出输入电压决定输出电压,而输入电流、输入功率却取决于输出电流、输出功率。学生很难接收。笔者打了个比喻,输入电压决定输出电压比作计划经济:供给多少(输入电压)决定消费多少(输出电压),输入电流、输入功率取决于输出电流、输出功率比作市场经济:需求多少(输出功率、输出电流)决定供给多少(输入功率、输入电流)。案例8:电磁场教学中有以下三对符号:×、・;、;、,第三对为正负电荷不容易搞错,第一对与第二对符号则容易搞错,第一对表示磁场进出,第二对表示电流进出,为了让学生快速准确记住,采用类比隐喻记忆,电流往往用带绝缘塑料皮的导线传输,所以用带圆圈的点、叉表示,则另一对不带圆圈的点、叉表示磁场。而且用古人射箭比喻来记忆进出,当箭射出离你而去,你看到的应是箭尾:羽毛叉叉(××),就用“ד表示进去,当箭向你射来,你看到的是箭头点点(・・),就用“・”表示出来。案例9:在热力学第二定律的教学中,凡是涉及热现象的宏观过程都具有方向性问题,教师可举例生活中大量不可逆现象,如果再引用一专家学者:“微观过程可逆,宏观过程不可逆”的现象做出的比喻:一条黑狗身上生满跳蚤,一条黄狗是干净的,两条狗站在一起,跳蚤可以从黑狗身上跳到黄狗身上,可以从黄狗身上跳回黑狗身上,也可以再从黑狗身上跳到黄狗身上,跳蚤跳来跳去相当于微观过程是可逆的;但最后无论是黑狗还是黄狗都不可能是干净的,即从宏观上看,跳蚤从黄狗身上完全跳回黑狗身上,使黄狗重新干净这一宏观过程的逆过程是不可能发生的,则效果更佳。向心力、向心加速度教学设计篇五第五章曲线运动(五、向心力、向心加速度)教学目标:一知识目标:1.理解向心加速度和向心力的概念2.知道匀速圆周运动中产生向心加速度的原因。3.掌握向心力与向心加速度之间的关系。二能力目标:1.学会用运动和力的关系分析分题2.理解向心力和向心加速度公式的确切含义,并能用来进行计算。三德育目标:通过a与r及、v之间的关系,使学生明确任何一个结论都有其成立的条件。教学重点:1.理解向心力和向心加速的概念。2.知道向心力大小计算。教学难点:,向心加速的大小,并能用来进行匀速圆周运动的向心力和向心加速度都是大小不变,方向在时刻改变。教学方法:实验法、讲授法、归纳法、推理法教学用具:投影仪、投影片、多媒体、CAI课件、向心力演示器、钢球、木球、细绳教学步骤:一引入新课1.复习提问(用投影片出示思考题)(1)什么是匀速圆周运动(2)描述匀速圆周运动快慢的物理量有哪几个?(3)上述物理量间有什么关系?2.引入:由于匀速云的速度方向时刻在变,所以匀速圆周运动是变速曲线运动。而力是改变物体运动状态的原因。所以做匀速圆周运动的物体所受合外力有何特点?加速度又如何呢?本节课我们就来共同学习这个问题。二新课教学(一)用投影片出示本节课的学习目标:1.理解什么是向心力和向心加速度2.知道向心力和向心加速度的求解公式3.了解向心力的来源(二)学习目标完成过程1.向心力的概念及其方向(1)在光滑水平桌面上,做演示实验a:一个小球,拴住绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态b:用手轻击小球,小球做匀速直线运动c:当绳绷直时,小球做匀速圆周运动(2)用CAI课件,模拟上述实验过程(3)引导学生讨论、分析:a:绳绷紧前,小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论