七年级数学下册专题01平行线的四大模型(原卷版+解析)-7年级数学下册压轴题攻略(人教版)_第1页
七年级数学下册专题01平行线的四大模型(原卷版+解析)-7年级数学下册压轴题攻略(人教版)_第2页
七年级数学下册专题01平行线的四大模型(原卷版+解析)-7年级数学下册压轴题攻略(人教版)_第3页
七年级数学下册专题01平行线的四大模型(原卷版+解析)-7年级数学下册压轴题攻略(人教版)_第4页
七年级数学下册专题01平行线的四大模型(原卷版+解析)-7年级数学下册压轴题攻略(人教版)_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01平行线的四大模型专题分析专题分析平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型分类模型分类模型分析模型分析模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC=360°,则AB∥CD.典例分析典例分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【变式1-1】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40° B.50° C.130° D.140°【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100° B.105° C.115° D.125°【变式1-3】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC=()A.110° B.120° C.130° D.150°【变式1-4】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【变式1-5】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC=∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.模型分析模型分析模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44° B.34° C.24° D.14°【变式2-2】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44° B.34° C.24° D.14°【变式2-3】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60° B.70° C.80° D.90°【变式2-4】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1 B.2 C.3 D.4【变式2-5】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【变式2-6】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【变式2-7】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF∥AB)模型分析模型分析模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典例分析典例分析 【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD=80°,求∠CDE的度数.【变式3-1】已知AB∥CD.(1)如图1,求证:∠ABE+∠DCE﹣∠BEC=180°;(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F.若BF∥CE,∠BEC=26°,求∠BFC.模型分析模型分析模型四“骨折”模型点P在EF左侧,在AB、CD外部·“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.典例分析典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【变式4-1】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【变式4-2】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式4-3】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣α B.120°﹣α C.60°+α D.60°﹣α3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120° B.130° C.140° D.150°4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360° B.300° C.270° D.180°5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣ C.90﹣ D.90﹣+6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠PAB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD与∠α,∠β之间的数量关系.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为,∠EMC的度数为.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.11.(2023春•孝义市期末)综合与探究数学活动课上,老师以“一个含45°的直角三角板和两条平行线”为背景展开探究活动,如图1,已知直线m∥n,直角三角板ABC中,∠ACB=90°,∠BAC=∠ABC=45°.(1)如图1,若∠2=65°,则∠1=;(直接写出答案)(2)“启航”小组在图1的基础上继续展开探究:如图2,调整三角板的位置,当三角板ABC的直角顶点C在直线n上,直线m与AB,AC相交时,他们得出的结论是:∠1﹣∠2=135°,你认为启航小组的结论是否正确,请说明理由;(3)如图3,受到“启航”小组的启发,“睿智”小组提出的问题是:在图2的基础上,继续调整三角板的位置,当点C不在直线n上,直线m与AC,BC相交时,∠1与∠2有怎样的数量关系?请你用平行线的知识说明理由.12.(2023春•安化县期末)在课后学习中,小红探究平行线中的线段与角的数量关系,如图,直线AB∥CD,点N在直线CD上,点P在直线AB上,点M为平面上任意一点,连接MP,MN,PN.(1)如图1,点M在直线CD上,PM平分∠APN,试说明∠PMN=∠MPN;(2)如图2,点M在直线AB,CD之间,∠PMN=70°,∠MNC=30°,求∠APM的度数;(3)如图3,∠APM和∠MNC的平分线交于点Q,∠PQN与∠PMN有何数量关系?并说明理由.12.(2023春•甘井子区期末)如图1,点M在射线BA,CD之间,0°<∠ABM<30°,连接BM,过点M作ME⊥BM交射线CD于点E,且∠MED﹣∠B=90°.(1)求证:AB∥CD;(2)过点C作∠ECN=∠B,交直线ME于点N,先按要求画图,再解决下列问题.①当CN在CD上方,满足∠CNE=5∠B时,在图2中画图,求∠B的度数;②作∠BME的角平分线交射线CD于点K,交∠ECN的角平分线于点F,请直接写出∠MKC与∠MFC之间的数量关系.专题01平行线的四大模型专题分析专题分析平行线的性质和判定是证明角相等、研究角的关系的重要依据,是研究几何图形位置关系与数量关系的基础,是平面几何的一个重要内容和学习简单的逻辑推理的素材。它不但为三角形的内角和定理的证明提供了转化的方法,而且也是今后学习三角形、四边形知识的基础.本节课重点学习平行线的基础模型的应用迁移.模型分类模型分类模型分析模型分析模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC=360°,则AB∥CD.典例分析典例分析【典例1】(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【答案】(1)(2)证明见解析;(3)95°.【解答】(1)证明:如图所示:过点E作EH∥AB,∴∠A=∠AEF,∵∠A+∠D=∠AED,∠AED=∠AEF+∠DEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)证明:∵AB∥CD,∴∠A=∠EHG,∵∠EHG=∠D+∠AED,∴∠A=∠D+∠AED,∴∠A﹣∠D=∠AED;(3)解:设AE与CD交于点H,∠EAI=x,则∠BAI=,,∵AB∥CD,∴∠EHC=∠EAB=,∵∠I=∠AED=25°,∠EKI=∠EAI+∠I=∠EDI+∠AED,∴x+25°=∠EDI+25°,∴∠EDI=x,∵∠EDI=∠CDE,∴∠CDI=,∵∠CHE=∠CDE+∠AED,∴,解得:x=60°,∴∠EKD=∠AKI=180°﹣∠EAI﹣∠I=180°﹣60°﹣25°=95°.【变式1-1】(2023•渝中区校级模拟)如图,已知直线a∥b,∠BAC=90°,∠1=40°,则∠2的度数为()A.40° B.50° C.130° D.140°【答案】B【解答】解:如图,∵∠1+∠3+90°=180°,∠1=40°,∴∠3=50°,∵a∥b,∴∠2=∠3,∴∠2=50°,故选:B.【变式1-2】(2023•金安区一模)如图,已知a∥b,∠1=45°,∠2=125°,则∠ABC的度数为()A.100° B.105° C.115° D.125°【答案】A【解答】解:解法一:如图,过点B作DE∥a,∴∠DBA=∠1=45°,∵a∥b,DE∥a,∴DE∥b,∴∠2+∠DBC=180°,∴∠DBC=180°﹣∠2=180°﹣125°=55°,∴∠ABC=∠DBA+∠DBC=45°+55°=100°.解法二:如图,延长AB交b于点F,∵a∥b,∴∠1=∠3=45°,∵∠2=125°,∵∠2=∠3+∠CBF,∴∠CBF=∠2﹣∠3=125°﹣45°=80°,∴∠ABC=180°﹣∠CBF=180°﹣80°=100°.故选:A.【变式1-3】(2022春•肇州县期末)如图,AB∥CD,∠C=110°,∠B=120°,则∠BEC=()A.110° B.120° C.130° D.150°【答案】C【解答】解:∵过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1+∠B=180°,∠2+∠C=180°,∵∠C=110°,∠B=120°,∴∠1=60°,∠2=70°,∴∠BEC=∠1+∠2=130°.故选:C.【变式1-4】(2023春•巴南区月考)已知直线MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN和PO之间.(1)如图1,求证:∠CAB﹣∠MCA=∠PBA;(2)如图2,CD∥AB,点E在直线PQ上,且∠MCA=∠DCE,求证:∠ECN=∠CAB;(3)如图3,BF平分∠PBA,CG平分∠ACN,且AF∥CG.若∠CAB=50°,直接写出∠AFB的度数.【答案】(1)见解答.(2)见解答.(3)115°.【解答】(1)证明:过点A作AH∥MN,如图:∴AH∥MN∥PQ,∴∠MCA=∠CAH,∠PBA=∠BAH,∴∠CAB=∠CAH+∠BAH=∠MCA+∠PBA,∴:∠CAB﹣∠MCA=∠PBA.(2)证明:∵∠MCA=∠DCE.∴∠ACD=∠MCE,∵CD∥AB,∴∠CAB+∠ACD=180°,∴∠CAB=180°﹣∠ACD=180°﹣∠MCE,=∠ECN,∴∠ECN=∠CAB.(3)解:∵AF∥CG.∴∠GCA+∠FAC=180°,∵∠CAB=50°,∴∠GCA+∠CAB+∠FAC=180°,∴∠FAB=130°﹣∠GCA,∵BF平分∠PBA,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=50°,∴∠GCA﹣∠ABF=65°,∵∠ABF+∠AFB+∠FAB=180°,∴∠AFB=180°﹣∠ABF﹣∠FAB=180°﹣(130°﹣∠GCA)﹣∠ABF=50°+∠GCA﹣∠ABF=50°+65°=115°.∴∠AFB=115°.【变式1-5】(2023春•遂宁期末)如图,直线PQ∥MN,两个三角形如图①放置,其中∠ABC=∠CDE=90°,∠ACB=30°,∠BAC=60°,∠DCE=∠DEC=45°,点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数;(2)如图②,若将△ABC绕B点以每秒3°的速度按逆时针方向旋转(A,C的对应点分别为F,G).设旋转时间为t秒,当t=10时,边BG与CD有何位置关系?请说明理由.【答案】(1)60°;(2)BG∥CD,理由见解析.【解答】解:(1)∵∠ACB=30°,∴∠ACN=180°﹣∠ACB=150°,∵CE平分∠ACN,∴∠ECN=75°,∵PQ∥MN,∴∠ECN+∠CEQ=180°,∴∠CEQ=105°,∵∠DEC=45°,∴∠DEQ=∠CEQ﹣∠DEC=60°;(2)BG∥CD,理由如下:当t=10时,BC转动了3×10°=30°,即∠CBG=30°,由(1)可知∠ECN=75°,∠DCE=45°,∴∠DCN=∠ECN﹣∠DCE=30°,∴∠CBG=∠DCN,∴BG∥CD.模型分析模型分析模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.典例分析典例分析【典例2】(2023春•邵阳县期末)如图,直线AB∥CD,连接EF,直线AB,CD及线段EF把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点G落在某个部分时,连接GE,GF,构成∠EGF,∠GEB,∠GFD三个角.(1)当动点G落在第③部分时,如图一,试说明:∠EGF,∠GEB,∠GFD三者的关系;(2)当动点G落在第②部分时,如图二,思考(1)中三者关系是否仍然成立若不成立,说明理由.【答案】(1)∠EGF=∠GEB+∠GFD,理由见解答;(2)(1)中三者关系不成立,理由见解答.【解答】解:(1)∠EGF=∠GEB+∠GFD,理由:过点G作GM∥AB,∴∠GEB=∠EGM,∵AB∥CD,∴CD∥GM,∴∠GFD=∠FGM,∵∠EGF=∠EGM+∠FGM,∴∠EGF=∠GEB+∠GFD;(2)(1)中三者关系不成立,理由:过点G作GN∥AB,∴∠GEB+∠EGN=180°,∵AB∥CD,∴CD∥GN,∴∠GFD+∠FGN=180°,∴∠GEB+∠EGN+∠FGN+∠GFD=360°,即∠GEB+∠EGF+∠GFD=360°.【变式2-1】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44° B.34° C.24° D.14°【答案】B【解答】解:因为AB∥CD,且∠BEF=64°,所以∠DKF=∠BEF=64°.又三角形EFG为直角三角形,且∠G=90°,∠GEF=60°,所以∠F=30°.所以∠KHF=64°﹣30°=34°.又∠GHC=∠KHF,所以∠GHC=34°.故选:B.【变式2-2】(2023•盘锦)如图,直线AB∥CD,将一个含60°角的直角三角尺EGF按图中方式放置,点E在AB上,边GF,EF分别交CD于点H,K,若∠BEF=64°,则∠GHC等于()A.44° B.34° C.24° D.14°【答案】B【解答】解:因为AB∥CD,且∠BEF=64°,所以∠DKF=∠BEF=64°.又三角形EFG为直角三角形,且∠G=90°,∠GEF=60°,所以∠F=30°.所以∠KHF=64°﹣30°=34°.又∠GHC=∠KHF,所以∠GHC=34°.故选:B.【变式2-3】(2023•海南模拟)如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60° B.70° C.80° D.90°【答案】B【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF;∴∠B=∠BCF,∠FCD+∠D=180°,∴∠BCD=180°﹣∠D+∠B=180°﹣130°+20°=70°.故选:B.【变式2-4】(2023春•覃塘区期末)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=65°;④∠AEG=35°,其中正确的个数是()A.1 B.2 C.3 D.4【答案】B∴∠HFN=∠MNP=45°,∴∠EFH=∠EFN﹣∠HFN=105°,∴∠BEF=180°﹣∠EFH=75°,故③错误;④∵∠GEF=60°,∠BEF=【解答】解:①由题意得:∠G=∠MPN=90°,∴GE∥MP,故①正确;②由题意得∠EFG=30°,∴∠EFN=180°﹣∠EFG=150°,故②正确;③过点F作FH∥AB,如图,∵AB∥CD,∴∠BEF+∠EFH=180°,FH∥CD,75°,∴∠AEG=180°﹣∠GEF﹣∠BEF=45°,故④错误.综上所述,正确的有2个.故选:B.【变式2-5】(2023春•赣县区期末)【问题背景】:同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题探究】:(1)如图1,AB∥CD,E为AB、CD之间一点,连接BE、DE,得到∠BED与∠B、∠D之间的数量关系,并说明理由;【类比迁移】:(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:如图2,直线AB∥CD,若∠B=23°,∠G=35°,∠D=25°,求∠BEG+∠GFD的度数;【灵活应用】:(3)如图3,直线AB∥CD,若∠E=∠B=60°,∠F=85°,则∠D=25度.【答案】(1)∠BED=∠B+∠D,理由见解答;(2)∠BEG+∠GFD的度数为83°;(3)25.【解答】解:(1)∠BED=∠B+∠D,理由:过点E作EP∥AB,∴∠B=∠BEP,∵AB∥CD,∴CD∥EP,∴∠D=∠DEP,∵∠BED=∠BEP+∠DEP,∴∠BED=∠B+∠D;(2)过点G作GM∥AB,由(1)可得:∠BEG=∠B+∠EGM,∵AB∥CD,∴GM∥CD,由(1)可得:∠GFD=∠D+∠FGM,∵∠B=23°,∠EGF=35°,∠D=25°,∴∠BEG+∠GFD=∠B+EGM+∠D+∠FGM=∠B+∠D+∠EGF=23°+25°+35°=83°,∴∠BEG+∠GFD的度数为83°;(3)如图:∵∠B=60°,∠F=85°,∴∠BNF=180°﹣∠B﹣∠F=35°,∴∠ANE=∠BNF=35°,∵AB∥CD,∴由(1)可得:∠DEN=∠ANE+∠D,∴∠D=∠DEN﹣∠ANE=60°﹣35°=25°,故答案为:25.【变式2-6】(2023春•邵阳期末)如图1,直线AB∥CD,P是截线MN上的一点.(1)若∠MNB=45°,∠MDP=20°,求∠MPD;(2)如图1,当点P在线段MN上运动时,∠CDP与∠ABP的平分线交于Q,问是否为定值,若是定值,请求出;若不是定值,请说明理由;(3)如图2,若T是直线MN上且位于M点的上方的一点,如图所示,当点P在射线MT上运动时,∠CDP与∠ABP的平分线交于Q,问的值是否和(2)问中的情况一样呢?请你写出探究过程,说明理由.【答案】(1)∠MPD的度数25°;(2)是定值,=;(3)是定值,=.【解答】解:(1)∵AB∥CD,∠MNB=45°,∴∠DMP=180°﹣∠MNB=135°,∵∠MDP=20°,∴∠MPD=180°﹣∠DMP﹣∠MDP=25°,∴∠MPD的度数为25°;(2)是定值,理由:过点P作PG∥CD,∴∠CDP=∠DPG,∵CD∥AB,∴PG∥AB,∴∠ABP=∠BPG,∵∠DPB=∠DPG+∠BPG,∴∠DPB=∠CDP+∠ABP,同理可得:∠Q=∠CDQ+∠ABQ,∵DQ平分∠CDP,BQ平分∠ABP,∴∠CDQ=∠CDP,∠ABQ=∠ABP,∴∠Q=∠CDQ+∠ABQ=∠CDP+∠ABP=(∠CDP+∠ABP)=∠DPB,∴=;(3)是定值,理由:过点P作PG∥CD,∴∠CDP=∠DPG,∵CD∥AB,∴PG∥AB,∴∠ABP=∠BPG,∵∠DPB=∠BPG﹣∠DPG,∴∠DPB=∠ABP﹣∠CDP,同理可得:∠Q=∠ABQ﹣∠CDQ,∵DQ平分∠CDP,BQ平分∠ABP,∴∠CDQ=∠CDP,∠ABQ=∠ABP,∴∠Q=∠ABQ﹣∠CDQ=∠ABP﹣∠CDP=(∠ABP﹣∠CDP)=∠DPB,∴=.【变式2-7】(2023春•防城港期末)阅读下面材料:(1)小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a∥b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF∥AB)【答案】(1)∠B,CD,∠D;(2)∠BED=55°.【解答】(1)证明:过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴CD∥EF,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D,故答案为:∠B,CD,∠D;(2)解:如图乙,过点E作EF∥AB,∴∠BEF=∠ABE,∵a∥b,即AB∥CD,∴CD∥EF,∴∠DEF=∠CDE,∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,又∵∠ABC=50°,∠ADC=60°,∴∠ABE=25°,∠CDE=30°,∴∠BED=∠ABE+∠CDE=25°+30°=55°.模型分析模型分析模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.典例分析典例分析 【典例3】(2023春•中山区期末)如图,∠ABE+∠BED=∠CDE.(1)如图1,求证AB∥CD;(2)如图2,点P在AB上,∠CDP=∠EDP,BF平分∠ABE,交PD于点F,探究∠BFP,∠BED的数量关系,并证明你的结论;(3)在(2)的条件下,如图3,PQ交ED延长线于点Q,∠DPQ=2∠APQ,∠PQD=80°,求∠CDE的度数.【答案】(1)答案见解答过程;(2)∠BED=2∠BFP,理由见解答过程;(3)120°.【解答】(1)证明:延长CD交BE于点H,∴∠CDE=∠DHE+∠BED,∵∠ABE+∠BED=∠CDE,∴∠DHE=∠ABE,∴AB∥CD,(2)解:∠BFP,∠BED的数量关系是:∠BED=2∠BFP,理由如下:设∠EBF=α,∠CDP=β,∵BF平分∠ABE,∠CDP=∠EDP,∴∠EBF=∠ABF=α,∠CDP=∠EDP=β,∴∠PBE=2∠EBF=2α,由(1)可知:AB∥CD,∴∠DPB=∠CDP=β,∴∠APD=180°﹣∠∠DPB=180°﹣β,∵∠APD=∠ABF+∠BFP,∴180°﹣β=α+∠BFP,∴∠BFP=180°﹣(α+β),由四边形的内角和等于360°得:∠BED+∠EDP+∠DPB+∠PBE=360°,即:∠BED+β+β+2α=360°,∴∠BED=360°﹣2(α+β),∴∠BED=2∠BFP.(3)解:设∠APQ=θ,∴∠DPQ=2∠APQ=2θ,∴∠APD=∠APQ+∠DPQ=3θ,由(1)可知:AB∥CD,∴∠CDP+∠APD=180°,∴∠CDP=180°﹣∠APD=180°﹣3θ,∵∠PQD=80°,∴∠EDP=∠PQD+∠DPQ=80°+2θ,∵∠CDP=∠EDP,∴180°﹣3θ=80°+2θ,解得:θ=20°,∴∠CDP=180°﹣3θ=120°,∠EDP=80°+2θ=120°,根据周角的定义得:∠CDE+∠CDP+∠EDP=360°,∴∠CDE=360°﹣(∠CDP+∠EDP)=360°﹣(120°+120°)=120°.【变式3-1】已知AB∥CD.(1)如图1,求证:∠ABE+∠DCE﹣∠BEC=180°;(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F.若BF∥CE,∠BEC=26°,求∠BFC.【答案】(1)详见解析;(2)103°.【解答】(1)证明:如图,过E作EF∥AB,∵AB∥CD,∴DC∥EF,∴∠B=∠BEF,∠C+∠CEF=180°,∴∠C+∠B=∠BEC=180°,即:∠ABE+∠DCE﹣∠BEC=180°;(2)解:∵FB∥CE,∴∠FBE=∠BEC=26°,∵BF平分∠ABE,∴∠ABE=2∠FBE=52°,由(1)得:∠DCE=180°﹣∠ABE+∠BEC=180°﹣52°+26°=154°,∵CG平分∠ECD,∴∠DCG=77°,过点F作FN∥AB,如图:∵AB∥CD,∴FN∥CD,∴∠BFN=∠ABF=26°,∠NFC=∠DCG=77°,∴∠BFC=∠BFN+∠NFC=103°.模型分析模型分析模型四“骨折”模型点P在EF左侧,在AB、CD外部·“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.典例分析典例分析【典例4】(2022秋•朝阳区校级期末)已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD∵MN∥AB,∴∠A=∠MGA.∵MN∥CD,∴∠D=DGM(两直线平行,内错角相等)∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.【答案】(1)MN;∠A;∠DGM;两直线平行,内错角相等;(2)∠AGD=∠A﹣∠D.理由见解析;(3)42°.【解答】解:(1)过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:MN;∠A;∠DGM;两直线平行,内错角相等.(2)如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM﹣∠DGM=∠A﹣∠D.(3)如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠GAE,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM﹣∠DGM=42°.【变式4-1】(2022秋•肃州区校级期末)如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知)∴PM∥CD(平行于同一条直线的两直线平行)∴∠2+∠PFD=180°(两直线平行,同旁内角互补)∵∠PFD=130°(已知)∴∠2=180°﹣130°=50°∴∠EPF=∠1+∠2=40°+50°=90°即∠EPF=90°【探究】如图(2),AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.【应用】如图(3),在【探究】的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.【答案】[探究]70°;[应用]35°.【解答】[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°(等式的性质).[应用]如图③所示,∵EG是∠PEA的平分线,FG是∠PFC的平分线,∴∠AEG=AEP=25°,∠GFC=PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠EGF=∠MGF﹣∠MGE=60°﹣25°=35°.【变式4-2】(2022春•朝阳县期末)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【答案】(1)∠APB=∠A+∠B;(2)发生变化,∠APB=∠B﹣∠A,证明见解答过程.【解答】解:(1)∵记过点P作l1的平行线为PC,∵PC∥l1,∴∠A=∠APC,∵l1∥l2,∴PC∥l2,∴∠B=∠BPC,∴∠APB=∠APC+∠BPC=∠A+∠B,故答案为:∠APB=∠A+∠B;(2)发生变化,如图,过点PF∥AC,则∠APF=∠A,∵AC∥BD,∴PF∥BD,∴∠B=∠BPF,∴∠APB=∠BPF﹣∠APF=∠B﹣∠A.【变式4-3】(2020春•乳山市期中)【信息阅读】材料信息:如图①,AB∥DE,点C是直线AB,DE外任意一点,连接BC,DC.方法信息:如图②,在“材料信息”的条件下,∠B=55°,∠D=35°,求∠BCD的度数.解:过点C作CF∥AB.∴∠BCF=∠B=55°.∵AB∥DE,∴CF∥DE.∴∠DCF=∠D=35°.∴∠BCD=55°﹣35°=20°.【问题解决】(1)通过【信息阅读】,猜想:∠B,∠D,∠BCD之间有怎样的等量关系?请直接写出结论:∠BCD=∠B﹣∠D;(2)如图③,在“材料信息”的条件下,改变点C的位置,∠B,∠D,∠BCD之间的等量关系是否改变?若不改变,请写出理由;若改变,请写出新的等量关系及理由.【答案】∠BCD=∠B﹣∠D,∠BCD=∠D﹣∠B【解答】解(1)过C作CF∥ED,∵AB∥ED,∴AB∥CF,∴∠B=∠BCF,∠D=∠DCF,∵∠BCD=∠BCF﹣∠DCF,∴∠BCD=∠B﹣∠D,故答案为:∠BCD=∠B﹣∠D.(2)过点C作CF∥AB,∴∠BCF=∠B,∵AB∥DE,∴CF∥DE.∴∠DCF=∠D,∵∠BCD=∠DCF﹣BCF,∴∠BCD=∠D﹣∠B.1.(2023春•建昌县期末)如图,将一个含30°角的直角三角板的直角顶点C放在直尺的两边MN,PQ之间,则下列结论中:①∠1=∠3;②∠2=∠3;③∠1+∠3=90°;④若∠3=60°,则AB⊥PQ,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解答】解:设BC与PQ交于点F,AB与PQ交于点G,AB与MN交于点H,延长AC交PQ于点E,∵MN∥PQ,∴∠3=∠AEG,∵∠1≠∠AEG,∴∠3≠∠1,故①不正确;根据对顶角相等可得:∠2=∠3,故②正确;∵∠ACB是△CEF的一个外角,∠ACB=90°,∴∠ACB=∠AEB+∠1=90°,∵∠AEB=∠3,∴∠3+∠1=90°,故③正确;∵∠A=30°,∠3=60°,∴∠AHM=180°﹣∠A﹣∠3=90°,∵MN∥PQ,∴∠AHM=∠AGP=90°,∴AB⊥PQ,故④正确;所以,上列结论中,其中正确结论的个数是3个,故选:C.2.(2023春•芜湖期末)如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣α B.120°﹣α C.60°+α D.60°﹣α【答案】C【解答】解:连接BC,∵AB∥CD,∴∠ABO+∠CBO+∠BCO+∠OCD=180°,而∠CBO+∠BCO+∠O=180°,∴∠O=∠ABO+∠DCO=60°+α.故选:C.3.(2022•恩施州)已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠1=120°,则∠2=()A.120° B.130° C.140° D.150°【答案】D【解答】解:过含30°角的直角三角板的直角顶点B作BF∥l1,交AC于点F,∵∠C=30°,∴∠A=90°﹣∠C=60°.∵∠1=∠A+∠ADE,∴∠ADE=60°.∵BF∥l1,∴∠ABF=∠ADE=60°,∴∠FBG=90°﹣∠ABF=30°.∵BF∥l1,l1∥l2,∴BF∥l2,∴∠BGH+∠FBG=180°,∴∠BGH=180°﹣∠FBG=150°,∴∠2=∠BGH=150°.故选:D.4.(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360° B.300° C.270° D.180°【答案】A【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.5.(2021春•椒江区校级月考)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠FBC=n°,∠BAD=m°,则∠AEC等于()度.A.90﹣+m B.90﹣﹣ C.90﹣ D.90﹣+【答案】D【解答】解:如图,过点E作EM∥AB,∵AB∥CD,EM∥AB,∴AB∥EM∥CD,∴∠BAE=∠AEM,∠MEC=∠ECD,∠FBC+∠BCD=180°,∴∠BCD=180°﹣∠FBC=180°﹣n°,∵∠BAD和∠BCD的平分线交于点E,∴∠BAE=∠BAD=m°,∠ECD=∠BCD=(180°﹣n°),∴∠AEC=∠AEM+∠MEC=∠BAE+∠ECD=m°+(180°﹣n°)=90°+m°﹣n°,故选:D.6.(2023春•赫山区期末)【问题情景】(1)如图1,AB∥CD,∠PAB=135°,∠PCD=115°,求∠APC的度数;【问题迁移】(2)如图2,已知∠MON,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,连接PD,PC,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由;【知识拓展】(3)在(2)的条件下,若将“点P在A,B两点之间运动”改为“点P在A,B两点外侧运动(点P与点A,B,O三点不重合)”其他条件不变,请直接写出∠CPD与∠α,∠β之间的数量关系.【答案】(1)∠APC的度数为110°;(2)∠CPD=∠α+∠β,理由见解答;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.【解答】解:(1)过点P作PE∥AB,∴∠APE=180°﹣∠A=45°,∵AB∥CD,∴PE∥CD,∴∠CPE=180°﹣∠C=65°,∴∠APC=∠APE+∠CPE=45°+65°=110°,∴∠APC的度数为110°;(2)∠CPD=∠α+∠β,理由:过P作PE∥AD交CD于E,∴∠ADP=∠DPE=∠α,∵AD∥BC,∴PE∥BC,∴∠BCP=∠CPE=∠β,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)分两种情况:当P在BA延长线时,∠CPD=∠β﹣∠α,理由:如图3,过P作PE∥AD交CD于E,∴∠ADP=∠DPE=∠α,∵AD∥BC,∴PE∥BC,∴∠BCP=∠CPE=∠β,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β,理由:如图4,过P作PE∥AD交OD于E,∴∠ADP=∠DPE=∠α,∵AD∥BC,∴PE∥BC,∴∠BCP=∠CPE=∠β,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β,综上所述,∠CPD=∠β﹣∠α或∠CPD=∠α﹣∠β.7.(2022春•良庆区校级期中)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB=∠CFD,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解答;(3)105°.【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.8.(2021秋•平昌县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.【答案】(1)证明过程见解答;(2)证明过程见解答;(3)5或.【解答】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:∵∠BGA=∠F+∠BCF,∴∠BGA﹣∠F=∠BCF,∵∠BAG=∠BGA,∴∠∠BAG﹣∠F=∠BCF,∵∠BAG﹣∠F=45°,∴∠BCF=45°,∵∠BCD=90°,∴CF平分∠BCD;(3)解:有两种情况:①当M在BP的下方时,如图5,设∠ABC=4x,∵∠ABP=3∠PBG,∴∠ABP=3x,∠PBG=x,∵AG∥CH,∴∠BCH=∠AGB==90°﹣2x,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x,∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=2x﹣x=x,∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时,如图6,同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,∠GBM=2x+x=3x,∴∠ABM:∠GBM=x:3x=.综上,的值是5或.9.(2023春•黑山县期中)问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC的度数.由分析得,请你直接写出:∠CAF的度数为30°,∠EMC的度数为60°.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.【答案】(1)30°,60°;(2)∠EMC+∠CAF=90°,理由见解答;(3)∠BAG﹣∠BMD=30°,理由见解答.【解答】解:(1)由题可得,∠CAF=∠BAF﹣∠BAC=90°﹣60°=30°,∠EMC=∠BCH=90°﹣30°=60°;故答案为:30°,60°;(2)∠EMC+∠CAF=90°,理由:证明:如图,过C作CH∥GF,则∠CAF=∠ACH,∵DE∥GF,CH∥GF,∴CH∥DE,∴∠EMC=∠HCM,∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°;(3)∠BAG﹣∠BMD=30°,理由:证明:如图,过B作BK∥GF,则∠BAG=∠KBA,∵BK∥GF,DE∥GF,∴BK∥DE,∴∠BMD=∠KBM,∴∠BAG﹣∠BMD=∠ABK﹣∠KBM=∠ABC=30°.10.(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为45°;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF=100°时,请直接写出∠OEA与∠OFC的数量关系.【答案】(1)①45°;②120°;(2)∠OEA+2∠PFC=160°.【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,∴∠BEG=∠EGN,∵AB∥CD,∴∠NGF=∠GFD,∴∠EGF=∠BEG+∠GFD,同理可得∠EPF=∠BEP+∠PFD,∵EG⊥FG,∴∠EGF=90°,∵EP平分∠BEG,FP平分∠DFG;∴∠BEP=BEG,∠PFD=GFD,∴∠EPF=(∠BEG+∠GFD)=EGF=45°,故答案为:45°;②如图,过点Q作QR∥CD,∵∠BEG=40°,∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,∠GEQ=∠BEG=40°,∠GFD=∠QFD,设∠GFD=∠QFD=α,∵QR∥CD,AB∥CD,∴∠EQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论