新八年级数学讲义第11讲分式方程-提高班(学生版+解析)_第1页
新八年级数学讲义第11讲分式方程-提高班(学生版+解析)_第2页
新八年级数学讲义第11讲分式方程-提高班(学生版+解析)_第3页
新八年级数学讲义第11讲分式方程-提高班(学生版+解析)_第4页
新八年级数学讲义第11讲分式方程-提高班(学生版+解析)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第11讲分式方程1分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.【例题精选】例1(2023春•电白区期末)下列关于x的方程中,是分式方程的是()A.3x= B.=2 C.= D.3x﹣2y=1【随堂练习】1.(2023春•上海期中)在下列方程组中,()是分式方程.A.=1 B. C. D.2分式方程的解【例题精选】例1(2023秋•东城区期末)已知﹣2是关于x的分式方程的根,则实数k的值为________.3解分式方程解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.【例题精选】例1(2023•长兴县一模)关于x的分式方程﹣1=2的解是()A.x=1 B.x=2 C.x=3 D.x=例2(2023•广东模拟)分式方程+=1的解为()A.x=1 B.x=2 C.x=3 D.无解【随堂练习】1.(2023春•历下区校级期中)解分式方程﹣2=,去分母得()A.1﹣2(x﹣5)=﹣3 B.1﹣2(x﹣5)=3 C.1﹣2x﹣10=﹣3 D.1﹣2x+10=32.(2023•天桥区模拟)方程=的解是()A.x=6 B.x=7 C.x=8 D.x=﹣84分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【例题精选】例1(2023•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?例2(2023•泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【随堂练习】1.(2023•西宁一模)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成 B.每天比原计划少铺设10米,结果延期15天才完成 C.每天比原计划多铺设10米,结果提前15天才完成 D.每天比原计划少铺设10米,结果提前15天才完成2.(2023•南海区模拟)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.综合练习一.选择题(共2小题)1.解分式方程﹣=时,去分母后得到的方程正确的是()A.x﹣2x+1=x﹣1 B.2x﹣4x+2=x﹣1 C.2x+4x﹣2=x﹣1 D.x+2x﹣1=x﹣12.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成 B.每天比原计划少铺设10米,结果延期20天完成 C.每天比原计划多铺设10米,结果提前20天完成 D.每天比原计划少铺设10米,结果提前20天完成二.解答题(共5小题)3.解方程:﹣=14.某自动化车间计划生产40个零件,当生产任务完成一半时,停止生产进行自动化程序升级改造,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求升级改造前每小时生产多少个零件?5.解下列分式方程:(1)=1(2)=﹣36.某商店第一次用300元购进2B铅笔若干支,第二次又用300元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于210元,问每支售价至少是多少元?7.服装店去年10月以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元,进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入l2月份,服装店决定把剩余羽绒服按10月份标价的八折销售,结果全部卖掉,而且这批羽绒服总获利不少于15000元,问这批羽绒服至少购进多少件?第11讲分式方程1分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.【例题精选】例1(2023春•电白区期末)下列关于x的方程中,是分式方程的是()A.3x= B.=2 C.= D.3x﹣2y=1分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【解答】解:A、C、D项中的方程分母中不含未知数,故不是分式方程;B、方程分母中含未知数x,故是分式方程,故选:B.【点评】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数.【随堂练习】1.(2023春•上海期中)在下列方程组中,()是分式方程.A.=1 B. C. D.【解答】解:A、是分式方程,故此选项符合题意;B、不是分式方程,是整式方程,故此选项不符合题意;C、不是分式方程,故此选项不符合题意;D、不是分式方程,是整式方程,故此选项不符合题意;故选:A.2分式方程的解【例题精选】例1(2023秋•东城区期末)已知﹣2是关于x的分式方程的根,则实数k的值为________.分析:将x=﹣2代入分式方程,求出k即可.【解答】解:将x=﹣2代入分式方程,可得:﹣2﹣k=﹣4,解得:k=2,故答案为2.【点评】本题考查分式方程的解;将所给方程的解代入原方程求解k的值是关键.3解分式方程解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.【例题精选】例1(2023•长兴县一模)关于x的分式方程﹣1=2的解是()A.x=1 B.x=2 C.x=3 D.x=分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1﹣x=2x,解得:x=,经检验x=是分式方程的解.故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.例2(2023•广东模拟)分式方程+=1的解为()A.x=1 B.x=2 C.x=3 D.无解分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣x﹣1=x﹣3,解得:x=2,经检验x=2是分式方程的解,则分式方程的解为x=2.故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【随堂练习】1.(2023春•历下区校级期中)解分式方程﹣2=,去分母得()A.1﹣2(x﹣5)=﹣3 B.1﹣2(x﹣5)=3 C.1﹣2x﹣10=﹣3 D.1﹣2x+10=3【解答】解:方程变形得:﹣2=﹣,去括号得:1﹣2(x﹣5)=﹣3,故选:A.2.(2023•天桥区模拟)方程=的解是()A.x=6 B.x=7 C.x=8 D.x=﹣8【解答】解:去分母得:2x﹣6=x+2,解得:x=8,经检验x=8是分式方程的解.故选:C.4分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【例题精选】例1(2023•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?分析:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A、B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.例2(2023•泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?分析:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,根据总价=单价×数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种粽子最多能购进1000个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.【随堂练习】1.(2023•西宁一模)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成 B.每天比原计划少铺设10米,结果延期15天才完成 C.每天比原计划多铺设10米,结果提前15天才完成 D.每天比原计划少铺设10米,结果提前15天才完成【解答】解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.2.(2023•南海区模拟)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.综合练习一.选择题(共2小题)1.解分式方程﹣=时,去分母后得到的方程正确的是()A.x﹣2x+1=x﹣1 B.2x﹣4x+2=x﹣1 C.2x+4x﹣2=x﹣1 D.x+2x﹣1=x﹣1【解答】解:去分母得:2x+2(2x﹣1)=x﹣1,即2x+4x﹣2=x﹣1,故选:C.2.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成 B.每天比原计划少铺设10米,结果延期20天完成 C.每天比原计划多铺设10米,结果提前20天完成 D.每天比原计划少铺设10米,结果提前20天完成【解答】解:∵利用工作时间列出方程:﹣=20,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.二.解答题(共5小题)3.解方程:﹣=1【解答】解:2(x+1)2﹣(x﹣1)2=x2﹣16x=﹣2,经检验,x=﹣是原方程的根,所以原方程的解为:x=﹣.4.某自动化车间计划生产40个零件,当生产任务完成一半时,停止生产进行自动化程序升级改造,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求升级改造前每小时生产多少个零件?【解答】解:设升级改造前每小时生产x个零件,则升级改造前每小时生产(1+)x个零件,依题意,得:﹣=+,解得:x=10,经检验,x=10是所列分式方程的解,且符合题意.答:升级改造前每小时生产10个零件.5.解下列分式方程:(1)=1(2)=﹣3【解答】解:(1)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论