




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆石河子市石河子二中高三第五次模拟考试新高考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的虚部为()A.—1 B.—3 C.1 D.22.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为()A. B. C. D.3.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.已知的面积是,,,则()A.5 B.或1 C.5或1 D.5.已知为定义在上的偶函数,当时,,则()A. B. C. D.6.是虚数单位,则()A.1 B.2 C. D.7.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过8.若复数满足,则()A. B. C.2 D.9.若(是虚数单位),则的值为()A.3 B.5 C. D.10.如果,那么下列不等式成立的是()A. B.C. D.11.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.12.已知向量,且,则m=()A.−8 B.−6C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间(-∞,1)上递增,则实数a的取值范围是____14.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.15.在长方体中,,,,为的中点,则点到平面的距离是______.16.已知函数为奇函数,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线.18.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求,的值;(Ⅱ)若,求证:对于任意,.19.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.20.(12分)已知,函数的最小值为1.(1)证明:.(2)若恒成立,求实数的最大值.21.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.22.(10分)在中,角,,所对的边分别为,,,且.求的值;设的平分线与边交于点,已知,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.2、B【解析】
画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.3、A【解析】
根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4、B【解析】∵,,∴①若为钝角,则,由余弦定理得,解得;②若为锐角,则,同理得.故选B.5、D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.6、C【解析】
由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.7、D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.8、D【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.9、D【解析】
直接利用复数的模的求法的运算法则求解即可.【详解】(是虚数单位)可得解得本题正确选项:【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.10、D【解析】
利用函数的单调性、不等式的基本性质即可得出.【详解】∵,∴,,,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.11、D【解析】
根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.12、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.14、【解析】
画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意15、【解析】
利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.16、【解析】
利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【详解】由于函数为奇函数,则,即,,整理得,解得.当时,真数,不合乎题意;当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.综上所述,.故答案为:.【点睛】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)求出导数,问题转化为在上恒成立,利用导数求出的最小值即可求解;(2)分别设切点横坐标为,利用导数的几何意义写出切线方程,问题转化为证明两直线重合,只需满足有解即可,利用函数的导数及零点存在性定理即可证明存在.【详解】(1),函数在上单调递增等价于在上恒成立.令,得,所以在单调递减,在单调递增,则.因为,则在上恒成立等价于在上恒成立;又,所以,即.(2)设的切点横坐标为,则切线方程为……①设的切点横坐标为,则,切线方程为……②若存在,使①②成为同一条直线,则曲线与存在公切线,由①②得消去得即令,则所以,函数在区间上单调递增,,使得时总有又时,在上总有解综上,函数与总存在公切线.【点睛】本题主要考查了利用导数研究函数的恒成立问题,导数的几何意义,利用导数证明方程有解,属于难题.18、(Ⅰ),(Ⅱ)见解析【解析】
(1)根据导数的运算法则,求出函数的导数,利用切线方程求出切线的斜率及切点,利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出,值;(2)首先将不等式转化为函数,即将不等式右边式子左移,得,构造函数并判断其符号,这里应注意的取值范围,从而证明不等式.【详解】解:(1)由于直线的斜率为,且过点,故即解得,.(2)由(1)知,所以.考虑函数,,则.而,故当时,,所以,即.【点睛】本题考查了利用导数求切线的斜率,利用函数的导数研究函数的单调性、和最值问题,以及不等式证明问题,考查了分析及解决问题的能力,其中,不等式问题中结合构造函数实现正确转换为最大值和最小值问题是关键.19、(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】本题考查借助导数研究函数的单调性及最值,考查学生分析问题的能力,及逻辑推理能力,难度困难.20、(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可.详解:(Ⅰ)证明:,显然在上单调递减,在上单调递增,所以的最小值为,即.(Ⅱ)因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为.点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题.21、(1)(2)【解析】
(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.【详解】(1)∵是等比数列,且成等差数列∴,即∴,解得:或∵,∴∵∴(2)∵∴【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年云南省华宁二中高三质量监测(三)历史试题含解析
- 浙江国企招聘2025衢州古城文化旅游区运营管理有限公司招聘21人笔试参考题库附带答案详解
- 浙江国企招聘2025浙江南湖文化旅游集团有限公司招聘32人笔试参考题库附带答案详解
- 2025江西吉安市青原区两山人力资源服务有限公司招聘5人笔试参考题库附带答案详解
- 2025新疆哈密镜儿泉矿业有限责任公司第一批面向社会招聘19人笔试参考题库附带答案详解
- 2025年福建省福州市润楼体育产业发展有限公司2025年度公开招聘4人笔试参考题库附带答案详解
- 2024年度天津市护师类之儿科护理主管护师押题练习试题B卷含答案
- 2025年中国煤炭地质总局社会招聘20人笔试参考题库附带答案详解
- 2024年度四川省护师类之护师(初级)能力提升试卷B卷附答案
- 食品行业法规与标准试题及答案
- 【9物一模】安徽合肥瑶海区2025年中考物理一模试卷
- 双休日超车好时机!课件-2024-2025学年高中下学期学习哲思主题班会
- 餐厅点菜技巧培训
- 2025陕西西安亮丽电力集团限责任公司招聘55人高频重点模拟试卷提升(共500题附带答案详解)
- 建筑工程隔声、节能和LEED认证配合管理方案
- 办公室文员招聘启事范文模板
- 学风建设主题班会(大学班会)
- 干洗店服务合同
- IDC机柜租赁服务合同
- 急性心房颤动中国急诊管理指南(2024)解读
- 知识产权合规管理体系解读
评论
0/150
提交评论