2025届河南省示范初中高一下数学期末监测模拟试题含解析_第1页
2025届河南省示范初中高一下数学期末监测模拟试题含解析_第2页
2025届河南省示范初中高一下数学期末监测模拟试题含解析_第3页
2025届河南省示范初中高一下数学期末监测模拟试题含解析_第4页
2025届河南省示范初中高一下数学期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省示范初中高一下数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则B等于()A.或 B. C. D.以上答案都不对2.已知函数在区间上是增函数,且在区间上恰好取得一次最大值为2,则的取值范围是()A. B. C. D.3.在正四棱柱中,,则点到平面的距离是()A. B. C. D.4.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.85.不等式所表示的平面区域是()A. B.C. D.6.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.7.下图是某圆拱形桥一孔圆拱的示意图,这个圆的圆拱跨度米,拱高米,建造时每隔8米需要用一根支柱支撑,则支柱的高度大约是()A.9.7米 B.9.1米 C.8.7米 D.8.1米8.函数的定义域为()A. B. C. D.9.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.10.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线分别与x轴、y轴交于A,B两点,则等于________.12.已知向量,若,则________.13.在数列an中,a1=2,a14.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.15.已知角的终边经过点,则______.16.已知,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足:,.(1)求数列的通项公式;(2)求数列的前n项和为.18.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.19.在中,分别为内角的对边,且(1)求的大小:(2)若,求的面积.20.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.2、D【解析】

化简函数为正弦型函数,根据题意,利用正弦函数的图象与性质求得的取值范围.【详解】解:函数则函数在上是含原点的递增区间;又因为函数在区间上是单调递增,则,得不等式组又因为,所以解得.又因为函数在区间上恰好取得一次最大值为2,可得,所以,综上所述,可得.故选:D.【点睛】本题主要考查了正弦函数的图像和性质应用问题,也考查了三角函数的灵活应用,属于中档题.3、A【解析】

计算的面积,根据可得点到平面的距离.【详解】中,,,∴的边上的高为,∴,设到平面的距离为,则,又,∴,解得.故选A.【点睛】本题涉及点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.4、B【解析】

由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【点睛】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.5、D【解析】

根据二元一次不等式组表示平面区域进行判断即可.【详解】不等式组等价为或则对应的平面区域为D,

故选:D.【点睛】本题主要考查二元一次不等式组表示平区域,比较基础.6、B【解析】

根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.7、A【解析】

以为原点、以为轴,以为轴建立平面直角坐标系,设出圆心坐标与半径,可得圆拱所在圆的方程,将代入圆的方程,可求出支柱的高度【详解】由图以为原点、以为轴,以为轴建立平面直角坐标系,设圆心坐标为,,,则圆拱所在圆的方程为,,解得,,圆的方程为,将代入圆的方程,得.故选:A【点睛】本题考查了圆的标准方程在生活中的应用,需熟记圆的标准方程的形式,属于基础题.8、C【解析】要使函数有意义,需使,即,所以故选C9、B【解析】

把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.10、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

分别求得A,B的坐标,再用两点间的距离公式求解.【详解】根据题意令得所以令得所以所以故答案为:5【点睛】本题主要考查点坐标的求法和两点间的距离公式,还考查了运算求解的能力,属于基础题.12、【解析】

直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.13、2+【解析】

因为a1∴a∴=(=2+ln14、【解析】

根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【点睛】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.15、【解析】由题意,则.16、【解析】

由条件利用正切函数的单调性直接求出的值.【详解】解:函数在上单调递增,且,若,则,故答案为:.【点睛】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由等差数列的性质,求得,进而得到,即可求得数列的通项公式;(2)由(1)可得,列用裂项法,即可求解数列的前项和.【详解】(1)由等差数列的性质,可得,所以,又由,所以数列的通项公式.(2)由(1)可得,所以.【点睛】本题主要考查等差数列的通项公式及求和公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,能较好的考查考生的逻辑思维能力及基本计算能力,属于基础题.18、(1);(2)4.【解析】

(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)【解析】

(1)根据正弦定理将,角化为边得,即,再由余弦定理求解(2)根据,由正弦定理,求边b,又,然后代入公式求解.【详解】(1)因为,由正弦定理得:,即,,又,.(2)因为由正弦定理得,又,所以.【点睛】本题主要考查了正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因为,得到,.由余弦定理可得.(Ⅱ)由(Ⅰ)可得,从而,.故.【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.21、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解析】

(1)根据所给数据和公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论