2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题含解析_第1页
2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题含解析_第2页
2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题含解析_第3页
2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题含解析_第4页
2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省新乡市新誉佳高级中学数学高一下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差3.已知函数的零点是和(均为锐角),则()A. B. C. D.4.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.5.已知直线,若,则的值为()A.8 B.2 C. D.-26.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.7.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.8.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.9.下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1 B.2 C.3 D.410.执行如图所示的程序语句,输出的结果为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角是第四象限角,则角的终边在_____________12.已知x,y满足,则z=2x+y的最大值为_____.13.不等式的解为_______.14.设函数的部分图象如图所示,则的表达式______.15.已知点和在直线的两侧,则a的取值范围是__________.16.若,则=_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.18.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.19.已知,是第四象限角,求和的值.20.设等差数列的前项和为,且(是常数,),.(1)求的值及数列的通项公式;(2)设,求数列的前项和为.21.为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.2、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.3、B【解析】

将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.4、D【解析】

根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.5、D【解析】

根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.6、C【解析】

试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C7、D【解析】

由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】

根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.9、A【解析】

根据棱柱的概念和四棱锥的基本特征,逐项进行判定,即可求解,得到答案.【详解】由题意,根据棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确,故选A.【点睛】本题主要考查了四棱柱的概念及其应用,其中解答中熟记棱柱的概念以及四棱锥的基本特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、B【解析】

通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案.【详解】由已知中的程序语句可知:该程序的功能是求的值,输出的结果为,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、第二或第四象限【解析】

根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.12、1.【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.【详解】解:,在坐标系中画出图象,三条线的交点分别是,,,在中满足的最大值是点,代入得最大值等于1.故答案为:1.【点睛】本题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13、【解析】

把不等式转化为,即可求解.【详解】由题意,不等式,等价于,解得.即不等式的解为故答案为:.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.15、【解析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.16、【解析】

∵,∴∴=1×[+]=1.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【点睛】本题考查了根据正余弦定理解三角形,属于简单题.18、(1)2,6,14;(2)(3)【解析】

(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.19、,【解析】

利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.20、(1);(2)【解析】

(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差数列的公差,于此可求出等差数列的通项公式;(2)先求出数列的通项公式,再利用错位相减法求出数列的前项和.【详解】(1)因为,所以当时,,解得.当时,,即.解得,所以,解得,则.数列的公差.所以;(2)因为,所以,①,②由①-②可得,所以.【点睛】本题考查等差数列通项的求解,考查错位相减法求和,解题时要注意错位相减求和法所适用数列通项的结构类型,要熟练错位相减法求和的基本步骤,难点在于计算量较大,属于中等题.21、(4)服用A药睡眠时间平均增加4.4;服用B药睡眠时间平均增加4.6;从计算结果来看,服用A药的效果更好;(4)A药

B药

6

4.

89565

45845

4.

794446844

7844567944

4.

46457

4544

4.

4

从茎叶图来看,A的数据大部分集中在第二、三段,B的数据大部分集中在第一、二段,故A药的药效好.【解析】(4)设A药观测数据的平均数为,B药观测数据的平均数为.由观测结果可得:=×(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论