福建省泉港六中2025届高一下数学期末学业质量监测试题含解析_第1页
福建省泉港六中2025届高一下数学期末学业质量监测试题含解析_第2页
福建省泉港六中2025届高一下数学期末学业质量监测试题含解析_第3页
福建省泉港六中2025届高一下数学期末学业质量监测试题含解析_第4页
福建省泉港六中2025届高一下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉港六中2025届高一下数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.2.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定3.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.4.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.5.数列的通项公式为,若数列单调递增,则的取值范围为A. B. C. D.6.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-107.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.8.若且,则()A. B. C. D.9.一个几何体的三视图如图所示,则这个几何体的体积等于()A. B.或 C.或 D.10.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是____.12.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.13.计算:__________.14.△ABC中,,,则=_____.15.设函数,则的值为__________.16.的内角的对边分别为,若,,,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.(Ⅰ)当切线PA的长度为时,求点的坐标;(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段长度的最小值.18.如图,在四棱锥中,底面为矩形,为等边三角形,且平面平面.为的中点,为的中点,过点,,的平面交于.(1)求证:平面;(2)若时,求二面角的余弦值.19.动直线m:3x+8y+3λx+λy+21=0(λ∈R)过定点M,直线l过点M且倾斜角α满足cosα,数列{an}的前n项和为Sn,点P(Sn,an+1)在直线l上.(1)求数列{an}的通项公式an;(2)设bn,数列{bn}的前n项和Tn,如果对任意n∈N*,不等式成立,求整数k的最大值.20.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.21.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.2、C【解析】

求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.3、D【解析】

利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【点睛】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.4、A【解析】

可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题5、C【解析】

数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化简解出即可得出.【详解】数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n1+n.∴a<1.故选C.【点睛】本题考查了等比数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.6、A【解析】

等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.7、D【解析】

由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D8、A【解析】

利用同角的三角函数关系求得,再根据正弦的二倍角公式求解即可【详解】由题,因为,,所以或,因为,所以,则,所以,故选:A【点睛】本题考查正弦的二倍角公式的应用,考查同角的三角函数关系的应用,考查已知三角函数值求三角函数值问题9、D【解析】

作出几何体的直观图,可知几何体为正方体切一角所得的组合体,计算出正方体的体积和所切去三棱锥的体积,相减可得答案.【详解】几何体的直观图如下图所示:可知几何体为正方体切一角所得的组合体,因此,该几何体的体积为.故选:D.【点睛】本题考查的知识点是由三视图求体积,其中根据三视图作出几何体的直观图是解答的关键,考查空间想象能力与计算能力,属于中等题.10、B【解析】试题分析:由正弦定理得31考点:正弦定理的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将三角函数化简为标准形式,再利用周期公式得到答案.【详解】由于所以【点睛】本题考查了三角函数的化简,周期公式,属于简单题.12、【解析】因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.13、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.14、【解析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理15、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.16、【解析】

由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)AB有最小值【解析】

试题分析:(Ⅰ)求点的坐标,需列出两个独立条件,根据解方程组解:由点是直线:上的一动点,得,由切线PA的长度为得,解得(Ⅱ)设P(2b,b),先确定圆的方程:因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:,再按b整理:由解得或,所以圆过定点(Ⅲ)先确定直线方程,这可利用两圆公共弦性质解得:由圆方程为及圆:,相减消去x,y平方项得圆方程与圆相交弦AB所在直线方程为:,相交弦长即:,当时,AB有最小值试题解析:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以4分(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:即由,7分解得或,所以圆过定点9分(Ⅲ)因为圆方程为即①圆:,即②②-①得圆方程与圆相交弦AB所在直线方程为:11分点M到直线AB的距离13分相交弦长即:当时,AB有最小值16分考点:圆的切线长,圆的方程,两圆的公共弦方程18、(1)证明见解析;(2)【解析】

(1)首先证明平面,由平面平面,可说明,由此可得四边形为平行四边形,即可证明平面;(2)延长交于点,过点作交直线于点,则即为二面角的平面角,求出的余弦值即可得到答案.【详解】(1)∵为矩形∴,平面,平面∴平面.又因为平面平面,∴.为中点,为中点,所以平行且等于,即四边形为平行四边形所以,平面,平面所以平面(2)不妨设,.因为为中点,为等边三角形,所以,,且∵,所以有平面,故因为平面平面∴平面,又,∴平面,则延长交于点,过点作交直线于点,由于平行且等于,所以为中点,,由于,,,所以平面,则,所以即为二面角的平面角在中,,,所以,所以.【点睛】本题考查线面平行的证明,以及二面角的余弦值的求法,考查学生空间想象能力,计算能力,由一定综合性.19、(1)an=6•(﹣1)n﹣1;(1)最大值为1.【解析】

(1)由直线恒过定点可得M(1,﹣3),求得直线l的方程,可得an+6=1Sn,运用数列的递推式和等比数列的通项公式,可得所求;(1)bn•(﹣1)n﹣1,讨论n为偶数或奇数,可得Tn,再由不等式恒成立问题解法,可得所求k的范围,可得最大值.【详解】(1)3x+8y+3λx+λy+11=0即为(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直线l的斜率为tanα1,即直线l的方程为y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,当n=1时,可得a1+6=1S1=1a1,即a1=6,n≥1时,an﹣1+6=1Sn﹣1,又an+6=1Sn,相减可得1an=an﹣an﹣1,即an=﹣an﹣1,可得数列{an}的通项公式an=6•(﹣1)n﹣1;(1)bn,即bn•(﹣1)n﹣1,当n为偶数时,Tnn;当n为奇数时,Tnn,当n为偶数时,不等式成立,即为1n﹣7即k≤1n﹣1,可得k≤1;当n为奇数时,不等式成立,即为1n﹣7即4k≤6n﹣1,可得k,综上可得k≤1,即k的最大值为1.【点睛】本题考查数列的递推式的运用,直线方程的运用,数列的分组求和,以及不等式恒成立问题解法,考查化简运算能力,属于中档题.20、(1);(2)或1【解析】

由向量共线的坐标运算得:设,可得,又因为,,即.由题意结合向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论