2025届安徽定远育才实验学校高一数学第二学期期末统考试题含解析_第1页
2025届安徽定远育才实验学校高一数学第二学期期末统考试题含解析_第2页
2025届安徽定远育才实验学校高一数学第二学期期末统考试题含解析_第3页
2025届安徽定远育才实验学校高一数学第二学期期末统考试题含解析_第4页
2025届安徽定远育才实验学校高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽定远育才实验学校高一数学第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A.4 B. C.1 D.22.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏4.已知数列中,,则()A. B. C. D.5.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④6.若某程序框图如图所示,则该程序运行后输出的值是()A.3 B.4 C.5 D.67.在中,角的对边分别为,且,,,则的周长为()A. B. C. D.8.已知向量,若,则()A. B. C. D.9.定义在R上的函数fx既是偶函数又是周期函数,若fx的最小正周期是π,且当x∈0,π2A.-12 B.32 C.10.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.12.对任意实数,不等式恒成立,则实数的取值范围是____.13.己知数列满足就:,,若,写出所有可能的取值为______.14.已知,,若,则______.15.若,则=.16.若复数满足(为虚数单位),则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.18.在中,内角所对的边分别是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.19.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.20.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.21.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.2、A【解析】

根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.3、D【解析】

从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.4、B【解析】

由数列的递推关系,可得数列的周期性,再求解即可.【详解】解:因为,①则,②①+②有:,即,则,即数列的周期为6,又,得,,则,故选:D.【点睛】本题考查了数列的递推关系,重点考查了数列周期性的应用,属基础题.5、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.6、C【解析】

根据程序框图依次计算得到答案.【详解】根据程序框图依次计算得到结束故答案为C【点睛】本题考查了程序框图,意在考查学生对于程序框图的理解能力和计算能力.7、C【解析】

根据,得到,利用余弦定理,得到关于的方程,从而得到的值,得到的周长.【详解】在中,由正弦定理因为,所以因为,,所以由余弦定理得即,解得,所以所以的周长为.故选C.【点睛】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.8、A【解析】

先根据向量的平行求出的值,再根据向量的加法运算求出答案.【详解】向量,,

解得,

∴,

故选A.【点睛】本题考查了向量的平行和向量的坐标运算,属于基础题.9、B【解析】分析:要求f(5π3),则必须用f(x)=详解:∵f(x)的最小正周期是π∴f∵f(x)是偶函数∴f-π∵当x∈[0,π2则f故选B点睛:本题是一道关于正弦函数的题目,掌握正弦函数的周期性是解题的关键,考查了函数的周期性和函数单调性的性质.10、B【解析】

根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.详解:因为母线,所成角的余弦值为,所以母线,所成角的正弦值为,因为的面积为,设母线长为所以,因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为12、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.13、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=514、【解析】

首先令,分别把解出来,再利用整体换元的思想即可解决.【详解】令所以令,所以所以【点睛】本题主要考查了整体换元的思想以及对数之间的运算和公式法解一元二次方程.整体换元的思想是高中的一个重点,也是高考常考的内容需重点掌握.15、【解析】.16、【解析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)先利用向量垂直的坐标表示,得到,再利用正弦定理以及两角和的正弦公式将,化为,进而得到,由此能求出.(Ⅱ)将两边平方,推导出,当且仅当,时取等号,由此求出面积的最大值.【详解】解析:(Ⅰ)由得,则得,即由于,得,又A为内角,因此.(Ⅱ)将两边平方,即所以,当且仅当,时取等号.此时,其最大值为.【点睛】本题主要考查数量积的坐标表示及运算、两角和的正弦公式应用、三角形面积公式的应用以及利用基本不等式求最值.19、(1)30人;(2).【解析】

(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【点睛】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.20、(1)(2)【解析】

(1)不等式为,根据一元二次不等式的解法直接求得结果;(2)根据一元二次不等式与一元二次方程的关系可知的两根为:和,且,利用韦达定理构造方程可求得结果.【详解】(1)当时,由得:,解得:或不等式的解集为:(2)由不等式得:解集为方程的两根为:和,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论