河南省洛阳一中2025届高一下数学期末综合测试试题含解析_第1页
河南省洛阳一中2025届高一下数学期末综合测试试题含解析_第2页
河南省洛阳一中2025届高一下数学期末综合测试试题含解析_第3页
河南省洛阳一中2025届高一下数学期末综合测试试题含解析_第4页
河南省洛阳一中2025届高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳一中2025届高一下数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等比数列中,,,则()A.140 B.120 C.100 D.802.过点且与圆相切的直线方程为()A. B.或C.或 D.或3.在中,角的对边分别为,且,,,则的周长为()A. B. C. D.4.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.5.在中,若,,,则()A. B. C. D.6.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.7.已知向量,且,则()A. B. C. D.8.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.29.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.10.在△ABC中,N是AC边上一点,且=,P是BN上的一点,若=m+,则实数m的值为()A. B. C.1 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若数列的首项,且(),则数列的通项公式是__________.12.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.413.在数列中,若,(),则________14.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.15.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.16.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.18.已知数列的前项和,且;(1)求它的通项.(2)若,求数列的前项和.19.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.20.在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.21.已知.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

,计算出,然后将,得到答案.【详解】等比数列中,又因为,所以,所以,故选D项.【点睛】本题考查等比数列的基本量计算,属于简单题.2、C【解析】

分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.3、C【解析】

根据,得到,利用余弦定理,得到关于的方程,从而得到的值,得到的周长.【详解】在中,由正弦定理因为,所以因为,,所以由余弦定理得即,解得,所以所以的周长为.故选C.【点睛】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.4、A【解析】

根据图象求出即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A【点睛】本题考查了根据图象求函数解析式,利用周期求,代入最高点的坐标求是解题关键,属于基础题.5、D【解析】

由正弦定理构造方程即可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形的问题,属于基础题.6、B【解析】

利用椭圆的性质列出不等式求解即可.【详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【点睛】本题考查椭圆的方程及简单性质的应用,基本知识的考查.7、A【解析】

直接利用向量平行的充要条件列方程求解即可.【详解】由可得到.故选A【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.8、D【解析】

因为,所以由于与平行,得,解得.9、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10、B【解析】

根据向量的线性表示逐步代换掉不需要的向量求解.【详解】设,所以所以故选B.【点睛】本题考查向量的线性运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,12、4.3【解析】

由所给数据求出,根据回归直线过中心点可求解.【详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【点睛】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.13、【解析】

由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.15、【解析】

根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.16、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;‚分层抽样。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.18、(1)(2)【解析】

(1)由,利用与的关系式,即可求得数列的通项公式;(2)由(1)可得,利用乘公比错位相减法,即可求得数列的前项和.【详解】(1)由,当时,;当时,,当也成立,所以则通项;(2)由(1)可得,-,,两式相减得所以数列的前项和为.【点睛】本题主要考查了数列和的关系、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,着重考查了的逻辑思维能力及基本计算能力等.19、(1)(2)见证明;(3)【解析】

(1)根据指数函数定义得到,检验得到答案.(2),判断关系得到答案.(3)利用函数的单调性得到答案.【详解】解:(1)∵函数是指数函数,且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函数;(3)不等式:,以2为底单调递增,即,∴,解集为.【点睛】本题考查了函数的定义,函数的奇偶性,解不等式,意在考查学生的计算能力.20、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论