版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届豫东名校高一下数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.2.在中,内角A,B,C所对的边分别为a,b,c,若,,则一定是()A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形3.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.4.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.245.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.6.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.7.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.8.在中,若,则()A. B. C. D.9.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获10.已知正实数满足,则的最大值为()A.2 B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值为___________.12.在数列中,已知,,记为数列的前项和,则_________.13.中,,,,则________.14.某银行一年期定期储蓄年利率为2.25%,如果存款到期不取出继续留存于银行,银行自动将本金及80%的利息(利息须交纳20%利息税,由银行代交)自动转存一年期定期储蓄,某人以一年期定期储蓄存入银行20万元,则5年后,这笔钱款交纳利息税后的本利和为________元.(精确到1元)15.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.16.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为数列的前项和,.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知为等差数列,且,.求的通项公式;若等比数列满足,,求的前n项和公式.19.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.20.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.21.如图长方体中,,分别为棱,的中点(1)求证:平面平面;(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.2、D【解析】
利用余弦定理、等边三角形的判定方法即可得出.【详解】由余弦定理得,则,即,所以.∵∴是等边三角形.故选D.【点睛】本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,熟练掌握余弦定理是解答本题的关键.3、C【解析】
作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.4、D【解析】由等差数列的性质可得,则,故选D.5、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.6、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、B【解析】
根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【点睛】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.8、A【解析】
由已知利用余弦定理即可解得的值.【详解】解:,,,由余弦定理可得:,解得:,故选:A.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.9、B【解析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.10、B【解析】
由,然后由基本不等式可得最大值.【详解】,当且仅当,即时,等号成立.∴所求最大值为.故选:B.【点睛】本题考查用基本不等式求最值,注意基本不等式求最值的条件:一正二定三相等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
=12、【解析】
根据数列的递推公式求出该数列的前几项,找出数列的周期性,从而求出数列的前项和的值.【详解】对任意的,,.则,,,,,,所以,.,且,,故答案为:.【点睛】本题考查数列递推公式的应用,考查数列周期性的应用,解题时要结合递推公式求出数列的前若干项,找出数列的规律,考查推理能力和计算能力,属于中等题.13、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【详解】由余弦定理可得,解得.故答案为:7.【点睛】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、218660【解析】
20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【详解】20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【点睛】本题主要考查了银行存款的复利问题,由固定公式可用,本息和=本金×(1+利率×(1-15、825【解析】
以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.16、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由即可求得通项公式;(2)由(1)中所求的,以及,可得,再用裂项求和求解前项和即可.【详解】(1)当时,整理得,即数列是以首项为,公比为2的等比数列,故(2)由(1)得,,故=故数列的前项和.【点睛】本题考查由和之间的关系求解数列的通项公式,以及用裂项求和求解前项和,属数列综合基础题.18、(1);(2).【解析】
设等差数列的公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则的通项公式可求;求出,进一步得到公比,再由等比数列的前n项和公式求解.【详解】为等差数列,设公差为d,由已知可得,解得,.;由,,等比数列的公比,的前n项和公式.【点睛】本题考查等差数列的通项公式,考查等比数列的前n项和,是中档题.19、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.20、(1)见证明;(2)【解析】
(1)利用线面垂直判定定理得平面,可得;根据等腰三角形三线合一得,利用线面垂直判定定理和面面垂直判定定理可证得结论;(2)利用线面平行的性质定理可得,可知为中点,利用体积桥可知,利用三棱锥体积公式可求得结果.【详解】(1)证明:,平面又平面,为线段的中点平面平面平面平面(2)平面,平面平面为中点为中点三棱锥的体积为【点睛】本题考查面面垂直的证明、三棱锥体积的求解,涉及到线面垂直的判定和性质定理、面面垂直的判定定理、线面平行的性质定理、棱锥体积公式、体积桥方法的应用,属于常考题型.21、(1)见证明;(2);画图见解析【解析】
(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.(2)根据通过辅助线推出线面平行再推出线线平行,再根据“一条和平面不平行的直线与平面的公共点即为直线与平面的交点”得到点位置,然后计算的值.【详解】(1)证明:在长方体中,,分别为棱,的中点,所以平面,则,在中,,在中,,所以,因为在中,,所以,所以,又因为,所以平面,因为平面,所以平面平面(2)如图所示:设,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司服务台管理规范
- 城市绿化项目施工合同台账
- 样本解约合同
- 印刷包装厂房租赁
- 国际物流交流:微信群管理办法
- 舞蹈编排大赛代理协议
- 2024年快递物流服务代理协议
- 网络硬盘系统服务器租赁合同
- 环保工程仓库施工合同范本
- 体育赛事纪念品店租赁协议
- 岩浆岩及变质岩
- 肺爆震伤-PPT课件
- JIS G3141-2021 冷轧钢板及钢带标准
- 苏霍姆林斯基教育思想-PPT课件
- 《中国音乐发展简史》PPT课件
- 药物设计学:第三章_基于性质的药物设计
- 中国四大菜系(英语版)ppt
- XX老干部活动中心可行性研究报告
- 广东中考英语重点难点教材梳理
- 第三章 农产品市场与价格zyx
- 新能源汽车简介PPT课件:节能减排低碳环保
评论
0/150
提交评论