![浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view12/M02/1A/32/wKhkGWZzHRuACY7qAAHdX8yHycU629.jpg)
![浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view12/M02/1A/32/wKhkGWZzHRuACY7qAAHdX8yHycU6292.jpg)
![浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view12/M02/1A/32/wKhkGWZzHRuACY7qAAHdX8yHycU6293.jpg)
![浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view12/M02/1A/32/wKhkGWZzHRuACY7qAAHdX8yHycU6294.jpg)
![浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view12/M02/1A/32/wKhkGWZzHRuACY7qAAHdX8yHycU6295.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嵊州市崇仁中学2025届数学高一下期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线平行,则实数A.0 B.1 C. D.2.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.3.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.4.圆与圆的位置关系是()A.外离 B.相交 C.内切 D.外切5.已知向量,且,则().A. B.C. D.6.为了得到函数的图像,只需把函数的图像()A.向右平移个单位长度,再把各点的横坐标伸长到原来的3倍;B.向左平移个单位长度,再把各点的横坐标伸长到原来的3倍;C.向右平移个单位长度,再把各点的横坐标缩短到原来的倍;D.向左平移个单位长度,再把各点的横坐标缩短到原来的倍7.经过平面外一点和平面内一点与平面垂直的平面有()A.1个 B.2个 C.无数个 D.1个或无数个8.已知为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是()A.②③ B.①③ C.②④ D.①④9.已知数列的前项和为,且,则()A. B. C. D.10.数列的通项,其前项和为,则为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列是正项数列,且,则_______.12.若正实数满足,则的最小值为______.13.已知等差数列的前项和为,若,则_______.14.在数列an中,a1=2,a15.的值域是______.16.设是等差数列的前项和,若,,则公差(___).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定3998是否是数列中的项?18.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.19.近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)20.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.21.已知数列满足,,.(1)求证数列是等比数列,并求数列的通项公式;(2)设,数列的前项和,求证:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.2、A【解析】
直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A3、C【解析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.4、D【解析】
根据圆的方程求得两圆的圆心和半径,根据圆心距和两圆半径的关系可确定位置关系.【详解】由圆的方程可知圆圆心为,半径;圆圆心为,半径圆心距为:两圆的位置关系为:外切本题正确选项:【点睛】本题考查圆与圆的位置关系的判定,关键是能够通过圆的方程确定两圆的圆心和半径,从而根据圆心距和半径的关系确定位置关系.5、D【解析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.6、B【解析】
根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.【详解】把函数y=2sinx,x∈R的图象上所有的点向左平移个单位长度,可得函数y=2sin(x)的图象,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变),可得函数y=2sin(),x∈R的图象,故选:B.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.7、D【解析】
讨论平面外一点和平面内一点连线,与平面垂直和不垂直两种情况.【详解】(1)设平面为平面,点为平面外一点,点为平面内一点,此时,直线垂直底面,过直线的平面有无数多个与底面垂直;(2)设平面为平面,点为平面外一点,点为平面内一点,此时,直线与底面不垂直,过直线的平面,只有平面垂直底面.综上,过平面外一点和平面内一点与平面垂直的平面有1个或无数个,故选D.【点睛】借助长方体研究空间中线、面位置关系问题,能使问题直观化,降低问题的抽象性.8、B【解析】
利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.9、D【解析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.10、A【解析】分析:利用二倍角的余弦公式化简得,根据周期公式求出周期为,从而可得结果.详解:首先对进行化简得,又由关于的取值表:123456可得的周期为,则可得,设,则,故选A.点睛:本题考查二倍角的余弦公式、三角函数的周期性以及等差数列的求和公式,意在考查灵活运用所学知识解决问题的能力以及计算能力,求求解过程要细心,注意避免计算错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
有已知条件可得出,时,与题中的递推关系式相减即可得出,且当时也成立。【详解】数列是正项数列,且所以,即时两式相减得,所以()当时,适合上式,所以【点睛】本题考差有递推关系式求数列的通项公式,属于一般题。12、【解析】
由得,将转化为,整理,利用基本不等式即可求解。【详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【点睛】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。13、【解析】
先由题意,得到,求出,再由等差数列的性质,即可得出结果.【详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【点睛】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.14、2+【解析】
因为a1∴a∴=(=2+ln15、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.16、【解析】
根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)第1000项【解析】
(1)由题意有,解方程组即得数列的通项公式;(2)假设3998是数列中的项,有,得,即可判断得解.【详解】解:(1)设数列的公差为,由题意有,解得,则数列的通项公式为.(2)假设3998是数列中的项,有,得,故3998是数列中的第1000项.【点睛】本题主要考查等差数列基本量的计算,考查某一项是否是等差数列中的项的判定,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1),;(2)见解析;(3)存在,.【解析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得,则,令,解得,又为正整数,所以满足题意.【点睛】给定数列的递推关系,求数列的通项时,我们常需要对递推关系做变形构建新数列(新数列的通项容易求得),常见的递推关系、变形方法及求法如下:(1),用累加法;(2),可变形为,利用等比数列的通项公式可求的通项公式,两种方法都可以得到的通项公式.(3)递推关系式中有与前项和,可利用实现与之间的相互转化.另外,数列不等式恒成立与有解问题,可转化为数列的最值(或项的范围)来处理.19、(1)(2)应安排名民工参与抢修,才能使总损失最小【解析】
(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可得到结果.【详解】由题意,可得,所以.设总损失为元,则当且仅当,即时,等号成立,所以应安排名民工参与抢修,才能使总损失最小.【点睛】本题主要考查了函数的实际应用问题,以及基本不等式求最值的应用,其中解答中认真审题是关键,以及合理运用函数与不等式方程思想的有机结合,及基本不等式的应用是解答的关键,属于中档题,着重考查了分析问题和解答问题的能力.20、(1);(2).【解析】
(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个数,由此能求出学生M、N至少有一人被选中的概率.【详解】(1)由频率分布直方图得:,∴估计该市高中学生的平均成绩为:.(2)设A、B、C、D四名学生的考试成绩在区间[80,90)内,M、N两名学生的考试成绩在区间[60,70)内,现从这6名学生中任选两人参加座谈会,基本事件总数,学生M、N至少有一人被选中包含的基本事件个数,∴学生M、N至少有一人被选中的概率.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国汽车皮带轮罩壳数据监测研究报告
- 2025至2030年中国固定回转支撑式起重机数据监测研究报告
- 2025至2030年中国中医仪器设备数据监测研究报告
- 2025年中国金刚布纹砖市场调查研究报告
- 2025至2031年中国高刚玉制品行业投资前景及策略咨询研究报告
- 2025至2030年中国金花米黄大板数据监测研究报告
- 2025至2030年中国超声波孔壁测定仪数据监测研究报告
- 2025至2030年中国色散分析仪数据监测研究报告
- 2025至2030年中国线阵超声诊断仪数据监测研究报告
- 2025至2030年中国现场直流电流校验信号发生器数据监测研究报告
- 2024公路工程施工安全风险辨识与管控实施指南
- 浙江省嘉兴市2023-2024学年高一上学期1月期末考试政治试题
- 新疆2024年新疆和田师范专科学校招聘70人笔试历年典型考题及考点附答案解析
- 【正版授权】 ISO 15978:2002 EN Open end blind rivets with break pull mandrel and countersunk head - AIA/St
- 2024时事政治考试题库(基础题)
- 2024山西文旅投资集团招聘117人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 小学校本课程教材《趣味数学》
- 干细胞疗法推广方案
- (2024年)电工安全培训(新编)课件
- mil-std-1916抽样标准(中文版)
- 《社区康复》课件-第七章 脑瘫患儿的社区康复实践
评论
0/150
提交评论