西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题含解析_第1页
西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题含解析_第2页
西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题含解析_第3页
西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题含解析_第4页
西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏山南地区第二高级中学2025届高一数学第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.162.棱长为2的正四面体的表面积是()A. B.4 C. D.163.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的图象如下,则点的坐标是()A.(,) B.(,)C.(,) D.(,)4.若,则()A.-4 B.3 C.4 D.-35.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直6.已知,当取得最小值时()A. B. C. D.7.已知、都是公差不为0的等差数列,且,,则的值为()A.2 B.-1 C.1 D.不存在8.在正方体中,,分别为棱,的中点,则异面直线与所成的角为A. B. C. D.9.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.1010.已知,若关于x的不等式的解集为,则()A. B. C.1 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.______.12.若不等式的解集为空集,则实数的能为___________.13.正方体中,异面直线和所成角的余弦值是________.14.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.15.已知函数.利用课本中推导等差数列的前项和的公式的方法,可求得的值为_____.16.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.18.已知,且,求的值.19.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持岁以下岁以上(含岁)(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.20.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.21.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.2、C【解析】

根据题意求出一个面的面积,然后乘以4即可得到正四面体的表面积.【详解】每个面的面积为,∴正四面体的表面积为.【点睛】本题考查正四面体的表面积,正四面体四个面均为正三角形.3、C【解析】

由函数f(x)的部分图象求得A、T、ω和φ的值即可.【详解】由函数f(x)=Asin(ωx+φ)的部分图象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1时,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴点P(,).故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.4、A【解析】

已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.5、D【解析】略6、D【解析】

可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.7、C【解析】

首先根据求出数列、公差之间的关系,再代入即可。【详解】因为和都是公差不为零的等差数列,所以设故,可得又因为和代入则.故选:C.【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。8、A【解析】

如图做辅助线,正方体中,且,P,M为和中点,,则即为所求角,设边长即可求得.【详解】如图,取的中点,连接,,.因为为棱的中点,为的中点,所以,所以,则是异面直线与所成角的平面角.设,在中,,,则,即.【点睛】本题考查异面直线所成的角,解题关键在于构造包含异面直线所成角的三角形.9、A【解析】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以.10、B【解析】

由韦达定理列方程求出,即可得解.【详解】由已知及韦达定理可得,,,即,,所以.故选:.【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【详解】令,则,两式作差得:所以故答案为:【点睛】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.12、【解析】

根据分式不等式,移项、通分并等价化简,可得一元二次不等式.结合二次函数恒成立条件,即可求得的值.【详解】将不等式化简可得即的解集为空集所以对于任意都恒成立将不等式等价化为即恒成立由二次函数性质可知化简不等式可得解得故答案为:【点睛】本题考查了分式不等式的解法,将不等式等价化为一元二次不等式,结合二次函数性质解决恒成立问题,属于中档题.13、【解析】

由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.14、4【解析】

由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.15、1.【解析】

由题意可知:可以计算出的值,最后求出的值.【详解】设,,所以有,因为,因此【点睛】本题考查了数学阅读能力、知识迁移能力,考查了倒序相加法.16、【解析】

用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或,(2)点P坐标为或.【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.18、【解析】

利用向量垂直和同角三角函数关系可求得;利用二倍角公式和同角三角函数平方关系将化为关于正余弦的齐次式的问题,分子分母同时除以可化为的形式,代入的值可求得结果.【详解】,即【点睛】本题考查正余弦齐次式的求解问题,涉及到向量垂直的坐标表示、同角三角函数关系和二倍角公式的应用;关键是能够灵活利用同角三角函数的平方关系构造出关于正余弦的齐次式,进而构造出正切的形式来进行求解.19、(1)120;(2).【解析】

(1)参与调查的总人数为20000,其中从持“不支持”态度的人数5000中抽取了30人,由此能求出n.(2)总体的平均数为9,与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,由此能求出任取1个数与总体平均数之差的绝对值超过0.6的概率.【详解】(1)参与调查的总人数为8000+4000+2000+1000+2000+3000=20000,其中不支持态度的人数2000+3000=5000中抽取了30人,所以n=.(2)总体的平均数与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,所以任取一个数与总体平均数之差的绝对值超过0.6的概率.【点睛】本题主要考查了样本容量的求法,分层抽样,用列举法求古典概型的概率,属于中档题.20、(1)(2)3;(3)【解析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.21、(1)(2)答案不唯一,具体见解析(3)【解析】

(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【详解】解:(Ⅰ)由图可知:,即,又由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论