2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题含解析_第1页
2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题含解析_第2页
2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题含解析_第3页
2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题含解析_第4页
2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省盘锦市第二高级中学高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的半径为()A.1 B.2 C.3 D.42.在中,角,,的对边分别是,,,若,则()A. B. C. D.3.已知,,且,则在方向上的投影为()A. B. C. D.4.某程序框图如图所示,该程序运行后输出的值是()A. B. C. D.5.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.6.在空间直角坐标系中,轴上的点到点的距离是,则点的坐标是()A. B. C. D.7.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.8.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.9.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称10.“”是“函数,有反函数”的()A.充分非必要条件 B.必要非充分条件 C.充要条件 D.即非充分又非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____12.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______13.的内角的对边分别为,若,,,则的面积为__________.14.竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:“置如其周,令相乘也,又以高乘之,三十六成一”.该术相当于给出圆锥的底面周长与高,计算其体积的近似公式为.该结论实际上是将圆锥体积公式中的圆周率取近似值得到的.则根据你所学知识,该公式中取的近似值为______.15.直线与圆的位置关系是______.16.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表周跑量(km/周)人数100120130180220150603010(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:注:请先用铅笔画,确定后再用黑色水笔描黑(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?18.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.19.已知函数f(x)=2cosx(sinx﹣cosx).(1)求函数f(x)的最小正周期及单调递减区间:(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.20.数列an,n∈N*各项均为正数,其前n项和为S(1)求证数列Sn2为等差数列,并求数列(2)设bn=24Sn4-1,求数列bn的前n21.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.2、D【解析】

由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.3、C【解析】

通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.4、B【解析】

模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.5、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.6、A【解析】

由空间两点的距离公式,代入求解即可.【详解】解:由已知可设,由空间两点的距离公式可得,解得,即,故选:A.【点睛】本题考查了空间两点的距离公式,属基础题.7、A【解析】

数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.8、D【解析】

根据函数的图象,得出振幅与周期,从而求出与的值.【详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【点睛】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.9、A【解析】

由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.10、A【解析】

函数,有反函数,则函数,上具有单调性,可得,即可判断出结论.【详解】函数,有反函数,则函数,上具有单调性,.是的真子集,“”是“函数,有反函数”的充分不必要条件.故选:A.【点睛】本题考查了二次函数的单调性、反函数、充分条件与必要条件的判定方法,考查推理能力与计算能力,同时考查函数与方程思想、数形结合思想.二、填空题:本大题共6小题,每小题5分,共30分。11、﹣1.【解析】

根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.12、【解析】

根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.13、【解析】

由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.14、3【解析】

首先求出圆锥体的体积,然后与近似公式对比,即可求出公式中取的近似值.【详解】由题知圆锥体的体积,因为圆锥的底面周长为,所以圆锥的底面面积,所以圆锥体的体积,根据题意与近似公式对比发现,公式中取的近似值为.故答案为:.【点睛】本题考查了圆锥体的体积公式,属于基础题.15、相交【解析】

由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.16、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)中位数为29.2,分布特点见解析;(3)3720元【解析】

(1)根据频数和频率之间的关系计算,即可得到答案;(2)根据频率分布直方图利用中位数两边频率相等,列方程求出中位数的值,进而得出结论;(3)根据频率分布直方图求出休闲跑者,核心跑者,精英跑者分别人数,进而求出平均值.【详解】(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:(2)中位数的估计值:由,所以中位数位于区间中,设中位数为,则,解得,因为,所以估计该市跑步爱好者多数人的周跑量多于样本的平均数.(3)依题意可知,休闲跑者共有人,核心跑者人,精英跑者人,所以该市每位跑步爱好者购买装备,平均需要元.【点睛】本题主要考查了平均数、中位数的求法,以及频率分布直方图的性质等相应知识的综合应用,着重考查了化简能力,推理计算能力,以及数形结合思想的应用,属于基础题.18、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)根据直线与直线垂直,求得直线的斜率为,再利用直线的点斜式方程,即可求解;(Ⅱ)设所求直线方程为,由点到直线的距离公式,列出方程,求得的值,即可得到答案.【详解】(Ⅰ)由题意,设所求直线的斜率为,由直线的斜率为,因为直线与直线垂直,所以直线的斜率为,所以所求直线的方程为直线的方程为:,即.(Ⅱ)设所求直线方程为,即,直线上任取一点,由点到直线的距离公式,可得,解得或-4,所以所求直线方程为:或.【点睛】本题主要考查了直线方程的求解,两直线的位置关系的应用,以及点到直线的距离公式的应用,着重考查了推理与运算能力,属于基础题.19、(1)函数的最小正周期为π;函数的减区间为[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】

(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性和单调性,得出结论;(2)利用正弦函数的定义域和值域,求得的范围,进而可得的范围.【详解】(1)函数f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函数的最小正周期为π.令2kπ2x2kπ,求得kπx≤kπ,可得函数的减区间为[kπ,kπ],k∈Z.(2)将f(x)的图象向左平移个单位后,得到函数g(x)=2sin(2x)﹣1=2sin(2x)﹣1的图象.在区间[0,]上,2x∈[,],sin(2x)∈[,1],f(x)∈[﹣2,1].若方程g(x)=m在区间[0,]上有解,则m∈[﹣2,1].【点睛】本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数的恒成立问题,正弦函数的定义域和值域,属于中档题.20、(1)证明见解析,an【解析】

(1)由题得Sn2-Sn-12=1(n≥2),即得数列Sn2为首项和公差都是1【详解】(1)证明:∵2anSn-an整理得,Sn又S1∴数列Sn2为首项和公差都是∴S又Sn>0∴n≥2时,an=S∴数列an的通项公式为a(2)解:∵bn∴Tn=1-1∵n∈N*依题意有23>1故所求最大正整数m的值为3.【点睛】本题主要考查等差数列性质的证明,考查项和公式求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论