版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届内蒙古乌兰察布市集宁区北京八中乌兰察布分校高一下数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知表示两条不同的直线,表示三个不同的平面,给出下列四个命题:①,,,则;②,,,则;③,,,则;④,,,则其中正确的命题个数是()A.1 B.2 C.3 D.42.已知数列满足,,,则的值为()A.12 B.15 C.39 D.423.已知,且,则()A. B. C. D.4.在三棱柱中,平面,,,,E,F分别是,上的点,则三棱锥的体积为()A.6 B.12 C.24 D.365.若且则的值是().A. B. C. D.6.设是内任意一点,表示的面积,记,定义,已知,是的重心,则()A.点在内 B.点在内C.点在内 D.点与点重合7.已知等差数列中,则()A.10 B.16 C.20 D.248.若,且为第四象限角,则的值等于A. B. C. D.9.下列函数中,最小正周期为的是()A. B. C. D.10.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_______________.12.函数的递增区间是__________.13.空间一点到坐标原点的距离是_______.14.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.15.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.16.函数的值域是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,();(1)求、、;(2)猜想数列的通项公式;(3)用数学归纳法证明你的猜想;18.如图,在△ABC中,已知AB=4,AC=6,点E为AB的中点,点D、F在边BC、AC上,且,,EF交AD于点P.(Ⅰ)若∠BAC=,求与所成角的余弦值;(Ⅱ)求的值.19.某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.20.(1)已知数列的前项和满足,求数列的通项公式;(2)数列满足,(),求数列的通项公式.21.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据线面和线线平行与垂直的性质逐个判定即可.【详解】对①,,,不一定有,故不一定成立.故①错误.对②,令为底面为直角三角形的直三棱柱的三个侧面,且,,,但此时,故不一定成立.故②错误.对③,,,,则成立.故③正确.对④,若,,则,或,又,则.故④正确.综上,③④正确.故选:B【点睛】本题主要考查了根据线面、线线平行与垂直的性质判断命题真假的问题,需要根据题意举出反例或者根据判定定理判定,属于中档题.2、B【解析】
根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.3、A【解析】
根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【详解】因为,,所以,所以,所以.故选:A【点睛】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.4、B【解析】
等体积法:.求出的面积和F到平面的距离,代入公式即可.【详解】由题意可得,的面积为,因为,,平面ABC,所以点C到平面的距离为,即点F到平面的距离为4,则三棱锥的体积为.故三棱锥的体积为12.【点睛】此题考察了三棱锥体积的等体积法,通过变化顶点和底面进行转化,属于较易题目.5、C【解析】由题设,又,则,所以,,应选答案C.点睛:角変换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.6、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P离线段AB的距离最近,故点Q在△GAB内由分析知,应选A.7、C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.8、D【解析】试题分析:∵为第四象限角,,∴,.故选D.考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.9、D【解析】
由函数的最小正周期为,逐个选项运算即可得解.【详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【点睛】本题考查了三角函数的最小正周期,属基础题.10、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】.12、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.13、【解析】
直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.14、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.15、【解析】
根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【点睛】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.16、【解析】
求出函数在上的值域,根据原函数与反函数的关系即可求解.【详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【点睛】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2);(3)证明见解析;【解析】
(1)根据数列的递推关系式,代入运算,即可求解、、;(2)由(1)可猜想得;(3)利用数学归纳法,即可证得猜想是正确的.【详解】(1)由题意,数列满足,();所以,,;(2)由(1)可猜想得;(3)①当时,,上式成立;②假设当时,成立,则当时,由①②可得,当时,成立,即数列的通项公式为.【点睛】本题主要考查了数列的递推关系式的应用,以及数学归纳法的证明,其中解答中根据数列的递推公式,准确计算,同时熟记数学归纳法的证明方法是解答的关键,着重考查了推理与论证能力,属于基础题.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以AC所在直线为x轴,过B且垂直于AC的直线于AC的直线为y轴建系,得到,,,,再由向量数量积的坐标表示,即可得出结果;(Ⅱ)先由A、P、D三点共线,得到,再由平面向量的基本定理,列出方程组,即可求出结果.【详解】(Ⅰ)以AC所在直线为x轴,过B且垂直于AC的直线于AC的直线为y轴建系如图,则,,,,∴,∴(Ⅱ)∵A、P、D三点共线,可设同理,可设由平面向量基本定理可得,解得∴,.【点睛】本题主要考查平面向量的夹角运算,以及平面向量的应用,熟记向量的数量积运算,以及平面向量基本定理即可,属于常考题型.19、(1);(2).【解析】
(1)写出从5个学生中任选2个人的所有等可能基本事件,计算事件2个人都是女生所含的基本事件个数;(2)写出从男生和女生中各选1个人的所有等可能基本事件,计算事件2个人包括,但不包括所含的基本事件个数.【详解】(1)由题意知,从5个学生中任选2个人,其所有等可能基本事件有:,,,,,,,,,,共10个,选2个人都是女生的事件所包含的基本事件有,,,共3个,则所求事件的概率为.(2)从男生和女生中各选1个人,其所有可能的结果组成的基本事件有,,,,,,共6个,包括,但不包括的事件所包含的基本事件有,,共2个,则所求事件的概率为.【点睛】本题的两问均考查利用古典概型的概率计算公式,求事件发生的概率,求解过程中要求列出所有等可能结果,并指出事件所包含的基本事件个数,最后代入公式计算概率.20、(1);(2).【解析】
(1)利用求出数列的通项公式;(2)利用累加法求数列的通项公式;【详解】解:(1)①当时,即当时,②①减②得经检验时,成立故(2)()……将上述式相加可得【点睛】本题考查作差法求数列的通项公式以及累加法求数列的通项公式,属于基础题.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨卫家电项目备案申请报告可行性研究报告
- 2025年度个人别墅防水防霉处理合同范本4篇
- 2025年无纺环保袋定制及环保理念推广合同3篇
- 《全球物流巨头运营策略》课件
- 2025年绿色建筑用地土地平整及配套基础设施建设合同3篇
- 2025年国家管网集团西气东输公司招聘笔试参考题库含答案解析
- 二零二五年度明光幼儿园食堂改造与后勤服务提升合同4篇
- 2025年浙江永嘉投资集团有限公司招聘笔试参考题库含答案解析
- 二零二五版二手房买卖合同中的违约赔偿标准约定3篇
- 2025年安徽宿州市城市建设投资集团控股有限公司招聘笔试参考题库附带答案详解
- 带状疱疹护理查房课件整理
- 年月江西省南昌市某综合楼工程造价指标及
- 奥氏体型不锈钢-敏化处理
- 作物栽培学课件棉花
- 交通信号控制系统检验批质量验收记录表
- 弱电施工验收表模板
- 绝对成交课件
- 探究基坑PC工法组合钢管桩关键施工技术
- 国名、语言、人民、首都英文-及各地区国家英文名
- API SPEC 5DP-2020钻杆规范
- 组合式塔吊基础施工专项方案(117页)
评论
0/150
提交评论