2025届安徽省马鞍山市高一下数学期末经典模拟试题含解析_第1页
2025届安徽省马鞍山市高一下数学期末经典模拟试题含解析_第2页
2025届安徽省马鞍山市高一下数学期末经典模拟试题含解析_第3页
2025届安徽省马鞍山市高一下数学期末经典模拟试题含解析_第4页
2025届安徽省马鞍山市高一下数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省马鞍山市高一下数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方形的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是()cm.A.12 B.16 C. D.2.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②3.已知集合A=-1,A.-1,  0,  14.已知集合A={1,2,3,4},B={2,3,4,5},则A∩B中元素的个数是()A.1 B.2 C.3 D.45.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.6.已知中,,,若,则的坐标为()A. B. C. D.7.湖南卫视《爸爸去哪儿》节目组为热心观众给予奖励,要从2014名小观众中抽取50名幸运小观众.先用简单随机抽样从2014人中剔除14人,剩下的2000人再按系统抽样方法抽取50人,则在2014人中,每个人被抽取的可能性()A.均不相等 B.不全相等C.都相等,且为 D.都相等,且为8.等差数列中,若,则=()A.11 B.7 C.3 D.29.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.在中,为的中点,,则()A. B. C.3 D.-3二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,且(),记,则的值是________.12.在中,角A,B,C的对边分别为,若,则此三角形的最大内角的度数等于________.13.设函数,则的值为__________.14.已知一个扇形的周长为4,则扇形面积的最大值为______.15.若在区间(且)上至少含有30个零点,则的最小值为_____.16.设是等差数列的前项和,若,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.19.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求△ABC的面积.20.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.21.已知等差数列满足,且是的等比中项.(1)求数列的通项公式;(2)设,数列的前项和为,求使成立的最大正整数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据直观图与原图形的关系,可知原图形为平行四边形,结合线段关系即可求解.【详解】根据直观图,可知原图形为平行四边形,因为正方形的边长为2cm,所以原图形cm,,则,所以原平面图形的周长为,故选:B.【点睛】本题考查了平面图形直观图与原图形的关系,由直观图求原图形面积方法,属于基础题.2、D【解析】

设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解析】

直接利用交集运算得到答案.【详解】因为A=-1,  故答案选B【点睛】本题考查了交集运算,属于简单题.4、C【解析】

求出A∩B即得解.【详解】由题得A∩B={2,3,4},所以A∩B中元素的个数是3.故选:C【点睛】本题主要考查集合的交集的计算,意在考查学生对该知识的理解掌握水平,属于基础题.5、B【解析】

假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【点睛】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.6、A【解析】

根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.7、C【解析】由题意可得,先用简单随机抽样的方法从2014人中剔除14人,则剩下的再分组,按系统抽样抽取.在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到的机会相等,均为故选C8、A【解析】

根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.9、A【解析】

对分类讨论,利用两条直线相互垂直的充要条件即可得出.【详解】由题意,当时,两条直线分别化为:,,此时两条直线相互垂直;当时,两条直线分别化为:,,此时两条直线不垂直,舍去;当且时,由两条直线相互垂直,则,即,解得或;综上可得:或,两条直线相互垂直,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.【点睛】本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.10、A【解析】

本题中、长度已知,故可以将、作为基底,将向量用基底表示,从而解决问题.【详解】解:在中,因为为的中点,所以,故选A【点睛】向量数量积问题常见解题方法有1.基底法,2.坐标法.基底法首先要选择两个不共线向量作为基向量,然后将其余向量向基向量转化,然后根据数量积公式进行计算;坐标法则要建立直角坐标系,然后将向量用坐标表示,进而运用向量坐标的运算规则进行计算.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.12、【解析】

根据大角对大边,利用余弦定理直接计算得到答案.【详解】在中,角A,B,C的对边分别为,若不妨设三边分别为:3,5,7根据大角对大边:角C最大故答案为【点睛】本题考查了余弦定理,属于简单题.13、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.14、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.15、【解析】

首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。16、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由,且,可得当也适合,;(2)∵18、(1)(2)【解析】

(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【点睛】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题.19、(1)(2)21【解析】

(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面积公式,即可求解.【详解】(1)由题意,因为,且为三角形的内角,所以,由正弦定理,可得,即,解得.(2)由(1)和,则,由三角形的面积公式,可得.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)化简得=,利用周期的公式和正弦型函数的性质,即可求解;(Ⅱ)由,可得,得到∈,即可求得函数的值域.【详解】(Ⅰ)由题意,化简得=,所以函数的最小正周期为,又由,解得所以的单调递增区间为.(Ⅱ)由,可得,所以∈,所以的值域为.【点睛】本题主要考查了三角函数的的图象与性质的应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)(2)8【解析】

(1)设等差数列的公差为,根据题意列出有关和的方程组,可解出和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论