




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广州市重点中学数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上任取两个实数,则满足的概率为()A. B. C. D.2.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.3.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.124.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.45.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.6.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从,,三所中学抽取60名教师进行调查,已知,,三所学校中分别有180,270,90名教师,则从学校中应抽取的人数为()A.10 B.12 C.18 D.247.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.8.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.9.已知直线是函数的一条对称轴,则的一个单调递减区间是()A. B. C. D.10.在,,,是边上的两个动点,且,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若与共线,则实数________.12.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.13.已知角的终边经过点,则______.14._________________.15.已知函数的图象如下,则的值为__________.16.已知锐角、满足,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.18.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?19.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.20.已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.(1)求曲线C的轨迹方程(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.21.已知函数,.(1)求函数的最小正周期;(2)求函数的最小值和取得最小值时的取值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为,在区间上任取两个实数,所以区域的面积为4,其中满足的平面区域面积为,故满足的概率为,选B.考点:本题主要考查几何概型概率计算.点评:简单题,几何概型概率的计算,关键是认清两个“几何度量”.2、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线4、D【解析】
直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.5、C【解析】
直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.6、A【解析】
按照分层抽样原则,每部分抽取的概率相等,按比例分配给每部分,即可求解.【详解】,,三所学校教师总和为540,从中抽取60人,则从学校中应抽取的人数为人.故选:A.【点睛】本题考查分层抽样抽取方法,按比例分配是解题的关键,属于基础题.7、D【解析】
求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.8、A【解析】角α终边上一点P(-2,3),所以cos(9、B【解析】
利用周期公式计算出周期,根据对称轴对应的是最值,然后分析单调减区间.【详解】因为,若取到最大值,则,即,此时处最接近的单调减区间是:即,故B符合;若取到最小值,则,即,此时处最接近的单调减区间是:即,此时无符合答案;故选:B.【点睛】对于正弦型函数,对称轴对应的是函数的最值,这一点值得注意.10、A【解析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据平面向量的共线定理与坐标表示,列方程求出x的值.【详解】向量(3,﹣1),(x,2),若与共线,则3×2﹣(﹣1)•x=0,解得x=﹣1.故答案为﹣1.【点睛】本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题.12、如果l⊥α,m∥α,则l⊥m或如果l⊥α,l⊥m,则m∥α.【解析】
将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.正确;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.13、【解析】由题意,则.14、3【解析】
分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.
故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,15、【解析】
由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【点睛】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.16、.【解析】试题分析:由题意,所以.考点:三角函数运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)10.【解析】
(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根据裂项相消法求,再解不等式得,即得的最小值.【详解】(1)由知:,两式相减得:,即,又数列为单调递增数列,,∴,∴,又当时,,即,解得或(舍),符合,∴是以1为首项,以2为公差的等差数列,∴.(2),∴,又∵,即,解得,又,所以的最小值为10.点睛:裂项相消法是指将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.18、(1)(2)小时【解析】
求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和的值,写出线性回归方程.将代入回归直线方程,可得结论.【详解】解:由题意,,,于是回归方程;由题意,时,答:根据回归方程,加工能力10个零件,大约需要小时.【点睛】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.19、;方程所表示的曲线是以为圆心,为半径的圆.【解析】
设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【点睛】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.20、(1);(2)2【解析】
(1)设点,运用两点的距离公式,化简整理可得所求轨迹方程;(2)由题意可知,直线的斜率存在,设直线方程为,求得到直线的距离,以及弦长公式,和三角形的面积公式,运用换元法和二次函数的最值可得所求.【详解】(1)设点,,即,,即,曲线的方程为.(2)由题意可知,直线的斜率存在,设直线方程为,由(1)可知,点是圆的圆心,点到直线的距离为,由得,即,又,所以,令,所以,,则,所以,当,即,此时,符合题意,即时取等号,所以面积的最大值为.【点睛】本题主要考查了轨迹方程的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电玩竞技桌与座椅出租考核试卷
- 游戏美术风格与视觉传达考核试卷
- 砖瓦制造机械的能效优化考核试卷
- 砼结构构件的预制与现浇结合技术考核试卷
- 窗帘行业法律法规与标准考核试卷
- 温州大学《美术教师职业技能训练》2023-2024学年第二学期期末试卷
- 辽宁省辽阳市2024-2025学年高三第二学期3月第一次测试化学试题含解析
- 山东省聊城市莘县第一中学2025届全国新高三下学期开学大联考试题生物试题含解析
- 辽宁省鞍山市第二十六中学2025年初三模拟检测试题(一)物理试题含解析
- 南宁师范大学师园学院《Hadoop+spark大数据分析技术课程设计》2023-2024学年第一学期期末试卷
- 2025年四川省攀枝花市米易县人才引进80人历年高频重点提升(共500题)附带答案详解
- 眼科检查-教学课件
- 亚硝酸盐中毒的护理查房
- 离婚协议书格式范文样本2025年
- 八下历史期中复习提纲晨读晚诵+基础知识默写(1-11课) - 2023-2024学年八年级历史下学期期中考点大串讲(统编版)
- 游戏情感化设计研究-洞察分析
- 食堂盒饭配送方案(5篇)
- 2025年中考数学二轮复习《压轴题》专项练习(一)(含答案)
- 网格员安全培训
- Environmental Biotechnology知到智慧树章节测试课后答案2024年秋哈尔滨工业大学
- 华中师范大学教育技术学硕士研究生培养方案
评论
0/150
提交评论