版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年中考数学二轮复习《压轴题》专项练习(一)LISTNUMOutlineDefault\l3如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣eq\f(1,2)),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.LISTNUMOutlineDefault\l3在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.LISTNUMOutlineDefault\l3如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、C,与y轴交于点B(0,3),抛物线的顶点为P.(1)求抛物线的解析式;(2)若抛物线向下平移k个单位后经过点(﹣5,6).①求k的值及平移后抛物线所对应函数的最小值;②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点,请探究:当点M在何处时,△MBD的面积是△MPQ面积的2倍?求出此时点M的坐标.LISTNUMOutlineDefault\l3如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由.LISTNUMOutlineDefault\l3如图,抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上.(1)求抛物线解析式;(2)设点F横坐标为m,①用含有m的代数式表示点E的横坐标为(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F的坐标.LISTNUMOutlineDefault\l3如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.(1)求抛物线的解析式;(2)当PO+PC的值最小时,求点P的坐标;(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.LISTNUMOutlineDefault\l3已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B(x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.LISTNUMOutlineDefault\l3抛物线y=ax2+bx+2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的解析式(2)在抛物线对称轴上找一点M,使△MBC的周长最小,并求出点M的坐标和△MBC的周长(3)若点P是x轴上的一个动点,过点P作PQ∥BC交抛物线与点Q,在抛物线上是否存在点Q,使B、C、P、Q为顶点的四边形为平行四边形?若存在请求出点Q的坐标,若不存在请说明理由.LISTNUMOutlineDefault\l3已知抛物线L1:y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).(1)求抛物线L的表达式;(2)若点P是直线y=x+1上的一个动点,将抛物线L进行平移得到抛物线L',点B的对应点为点Q,是否存在以A、B、P、Q四个点为顶点的四边形是菱形?若存在,求出抛物线的平移方式;若不存在,请说明理由.LISTNUMOutlineDefault\l3抛物线y=ax2+bx+c与直线y=﹣eq\f(1,2)有唯一的公共点A,与直线y=eq\f(3,2)交于点B,C(C在B的右侧),且△ABC是等腰直角三角形.过C作x轴的垂线,垂足为D(3,0).(1)求抛物线的解析式;(2)直线y=2x与抛物线的交点为P,Q,且P在Q的左侧.(ⅰ)求P,Q两点的坐标;(ⅱ)设直线y=2x+m(m>0)与抛物线的交点为M,N,求证:直线PM,QN,CD交于一点.
LISTNUMOutlineDefault\l3\s0答案LISTNUMOutlineDefault\l3解:(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣eq\f(1,2)),∴﹣eq\f(1,2)=4a﹣1,∴a=eq\f(1,8)∴抛物线的解析式为y=eq\f(1,8)(x﹣2)2﹣1.(2)证明:过点P作PJ⊥AF于J.∵P(m,n),∴n=eq\f(1,8)(m﹣2)2﹣1=eq\f(1,8)m2﹣eq\f(1,2)m﹣eq\f(1,2),∴P(m,eq\f(1,8)m2﹣eq\f(1,2)m﹣eq\f(1,2)),∴d=eq\f(1,8)m2﹣eq\f(1,2)m﹣eq\f(1,2)﹣(﹣3)=eq\f(1,8)m2﹣eq\f(1,2)m+eq\f(5,2),∵F(2,1),∴PF==,∵d2=eq\f(1,64)m4﹣eq\f(1,8)m3+eq\f(7,8)m2﹣eq\f(5,2)m+eq\f(25,4),PF2=eq\f(1,64)m4﹣eq\f(1,8)m3+eq\f(7,8)m2﹣eq\f(5,2)m+eq\f(25,4),∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值=2eq\r(2),∴DQ+QF的值最小时,△DFQ的周长最小,由(2)可知QF=QH,∴DQ+QF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2eq\r(2)+6,此时Q(4,﹣eq\f(1,2)).LISTNUMOutlineDefault\l3解:(1)把A(﹣1,0)和点B(0,3)代入y=﹣x2+bx+c,得,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵y=﹣(x﹣1)2+4,∴C(1,4),抛物线的对称轴为直线x=1,如图,设CD=t,则D(1,4﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(1+t,4﹣t),把P(1+t,4﹣t)代入y=﹣x2+2x+3得:﹣(1+t)2+2(1+t)+3=4﹣t,整理得t2﹣t=0,解得:t1=0(舍去),t2=1,∴P(2,3);(3)∵P点坐标为(2,3),顶点C坐标为(1,4),将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,∴E点坐标为(1,﹣1),∴点E关于y轴的对称点F(﹣1,﹣1),连接PF交y轴于M,则MP+ME=MP+MF=PF的值最小,设直线PF的解析式为y=kx+n,∴,解得:,∴直线PF的解析式为y=eq\f(4,3)x+eq\f(1,3),∴点M的坐标为(0,eq\f(1,3)).LISTNUMOutlineDefault\l3解:(1)∵点A(﹣1,0)、点B(0,3),在抛物线上,∴,解得:,∴所求的抛物线解析式为y=x2+4x+3;(2)设平移后抛物线的解析式为y=x2+4x+3+k.∵它经过点(﹣5,6),∴6=(﹣5)2+4(﹣5)+3+k.∴k=﹣2.∴平移后抛物线的解析式为y=x2+4x+3﹣2=x2+4x+1.配方,得y=(x+2)2﹣3.∵a=1>0,∴平移后的抛物线的最小值是﹣3.(3)由(2)可知,BD=PQ=2,对称轴为x=﹣2.又∵S△MBD=2S△MPQ,∴BD边上的高是PQ边上的高的2倍.设M点坐标为(m,n).①当M点的对称轴的左侧时,则有0﹣m=2(﹣2﹣m).∴m=﹣4.∴n=(﹣4)2+4(﹣4)+1=1.∴M(﹣4,1).②当M点在对称轴与y轴之间时,则有0﹣m=2[m﹣(﹣2)].∴m=﹣eq\f(4,3).∴n=(﹣eq\f(4,3))2+(﹣eq\f(16,3))+1=﹣2eq\f(5,9).∴M(﹣eq\f(4,3),﹣2eq\f(5,9)).③当M点在y轴的右侧时,则有m=2[(m﹣(﹣2)].∴m=﹣4<0,不合题意,应舍去.综合上述,得所求的M点的坐标是(﹣4,1)或(﹣eq\f(4,3),﹣2eq\f(5,9)).LISTNUMOutlineDefault\l3解:(1)将点B、C的坐标代入抛物线表达式得:,解得,故抛物线的解析式为y=x2﹣2x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4);(2)如图.∵B(3,0),C(0,﹣3),D(1,﹣4),∴BC2=32+32=18,BC=3eq\r(2),CD2=12+(4﹣3)2=2,CD=eq\r(2),BD2=42+(3﹣1)2=20,BD=2eq\r(5),∴BD2=BC2+CD2,∴△BCD是直角三角形,∠BCD=90°,∴tan∠CBD===;(3)∵点C关于抛物线y=x2﹣2x﹣3对称轴的对称点为E点,y=x2﹣2x﹣3的对称轴为x=1,∴E(2,﹣3),∵B(3,0),∴直线BE为y=3x﹣9,∴M(1,﹣6),由(2)知△CDB是直角三角形,∠BCD=90°,若△CDB和△BMP相似,可分两种情况进行解析:①∠MPB=∠BCD=90°时,点P在x轴上,∵M(1,﹣6),B(3,0),∴PM=6,BP=2,∴,∴=,∵∠MPB=∠BCD=90°,∴△CDB和△PBM,∴P(1,0);②∠MBP=∠BCD=90°时,∵M(1,﹣6),B(3,0),∴MB=2eq\r(10),∵△CDB和△BPM,∴,∴,解得PM=,∴点MP的纵坐标为eq\f(20,3)﹣6=eq\f(2,3),∴P(1,eq\f(2,3)).综上所述,存在,点P的坐标为(1,0)或(1,eq\f(2,3)).LISTNUMOutlineDefault\l3解:(1)∵抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),∴y=﹣(x﹣1)2+4=﹣x2+2x﹣1+4=﹣x2+2x+3,∴抛物线解析式为y=﹣x2+2x+3;(2)①当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∴1<m<3,设E点的横坐标为t,∵m﹣1=1﹣t,∴t=2﹣m,∴点E的横坐标为2﹣m;故答案为:2﹣m;②设F(m,﹣m2+2m+3)(1<m<3),则E(2﹣m,﹣m2+2m+3),∵矩形EFGH为正方形,∴FG=FE,即﹣m2+2m+3=m﹣(2﹣m),整理得m2=5,解得m1=﹣eq\r(5)(舍去),m2=eq\r(5),∴G点坐标为(eq\r(5),0);③过点D作DM⊥x轴于M,∵EG⊥AD,而DM⊥x轴,∴∠1=∠4,∴Rt△GEH∽Rt△DAM,∴,即∴GH=2EH,即2m﹣2=2(﹣m2+2m+3),整理得m2﹣m﹣4=0,解得m1=(舍去),m2=,∴G点坐标为(,0);(3)设AD交EF于Q,如图,∵FP⊥AD,∴∠DPF=90°,∵△DFP与△DAM相似∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,而FP⊥DQ,∴△FDQ为等腰三角形,∴FD=FQ,设直线AD的解析式为y=px+q,把A(﹣1,0),D(1,4)代入得,解得,∴直线AD的解析式为y=2x+2,当y=﹣m2+2m+3时,2x+2=﹣m2+2m+3,解得x=﹣eq\f(1,2)m2+m+eq\f(1,2),则Q(﹣eq\f(1,2)m2+m+eq\f(1,2),﹣m2+2m+3),∴FQ=m﹣(﹣eq\f(1,2)m2+m+eq\f(1,2))=eq\f(1,2)m2﹣eq\f(1,2)=eq\f(1,2)(m+1)(m﹣1),而DF2=(m﹣1)2+(﹣m2+2m+3﹣4)2=(m﹣1)2+(m﹣1)4,∴(m﹣1)2+(m﹣1)4=[eq\f(1,2)(m+1)(m﹣1)]2,而m≠1,∴1+(m﹣1)2=eq\f(1,4)(m+1)2整理得3m2﹣10m+7=0,解得m1=1(舍去),m2=eq\f(7,3),∴F点坐标为(eq\f(7,3),eq\f(20,9)).LISTNUMOutlineDefault\l3解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线的顶点的横坐标为2,∵顶点在BC边上,∴抛物线顶点坐标为(2,3),设抛物线解析式为y=a(x﹣2)2+3,把(0,0)坐标代入可得0=a(0﹣2)2+3,解得a=﹣eq\f(3,4),∴抛物线解析式为y=﹣eq\f(3,4)(x﹣2)2+3,即y=﹣eq\f(3,4)x2+3x;(2)连接PA,如图,∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC=PA+PC.当点P与点D重合时,PA+PC=AC;当点P不与点D重合时,PA+PC>AC;∴当点P与点D重合时,PO+PC的值最小,设直线AC的解析式为y=kx+b,根据题意,得,解得∴直线AC的解析式为y=﹣eq\f(3,4)x+3,当x=2时,y=﹣eq\f(3,4)x+3=eq\f(3,2),则D(2,eq\f(3,2)),∴当PO+PC的值最小时,点P的坐标为(2,eq\f(3,2));(3)存在.当以AC为对角线时,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);当AC为边时,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,y=﹣eq\f(3,4)x2+3x=﹣9,此时Q(6,﹣9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,﹣6);当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为﹣2,当x=﹣2时,y=﹣eq\f(3,4)x2+3x=﹣9,此时Q(﹣2,﹣9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,﹣12);综上所述,P(2,0),Q(2,3)或P(2,﹣6),Q(6,﹣9)或P(2,﹣12),Q(﹣2,﹣9).LISTNUMOutlineDefault\l3解:(1)①当a=﹣1,b=2,c=4时,抛物线解析式为y=﹣x2+2x+4,∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴抛物线的对称轴为直线x=1,顶点为D(1,5);②当y=﹣x时,﹣x2+2x+4=﹣x,整理得:x2﹣3x﹣4=0,∵Δ=(﹣3)2﹣4×1×(﹣4)=25>0,∴二次函数y=﹣x2+2x+4有两个不同的“零和点”;(2)如图,连接AC,∵y=ax2+bx+c,∴C(0,c),顶点D(﹣,),设直线CD的解析式为y=kx+n,则,解得:,∴直线CD的解析式为y=x+c,∴E(﹣,0),∵A(,0),B(,0),∴AE=﹣(﹣)=+,BE=﹣(﹣)=+,∵∠ACE=∠CBE,∠AEC=∠CEB,∴△EAC∽△ECB,∴=,∴CE2=AE•BE,在Rt△CEO中,CE2=OC2+OE2=c2+()2=c2+,∴c2+=(+)(+),化简得:ac=﹣1,故ac的值为﹣1.LISTNUMOutlineDefault\l3解:(1)将A(﹣3,0),B(1,0)代入y=ax2+bx+2,得:,解得:,∴抛物线的解析式为y=﹣eq\f(2,3)x2﹣x+2.(2)当x=0时,y=﹣eq\f(2,3)x2﹣eq\f(4,3)x+2=2,∴点C的坐标为(0,2).∵抛物线的解析式为y=﹣eq\f(2,3)x2﹣eq\f(4,3)x+2,∴抛物线的对称轴为直线x=﹣1.连接AC,交抛物线对称轴于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴MA=MB,∴MB+MC=MA+MC=AC,∴此时△MBC的周长取最小值.∵点A的坐标为(﹣3,0),点B的坐标为(1,0),点C的坐标为(0,2),∴AC=eq\r(13),BC=eq\r(5),直线AC的解析式为y=eq\f(2,3)x+2(可用待定系数法求出来).当x=﹣1时,y=eq\f(2,3)x+2=eq\f(4,3),∴当△MBC的周长最小时,点M的坐标为(﹣1,eq\f(4,3)),△MBC的周长为eq\r(13)+eq\r(5).(3)∵以B、C、P、Q为顶点的四边形为平行四边形,点B,P的纵坐标为0,点C的纵坐标为2,∴点Q的纵坐标为2或﹣2,如图2所示.当y=2时,﹣eq\f(2,3)x2﹣eq\f(4,3)x+2=2,解得:x1=﹣2,x2=0(舍去),∴点Q的坐标为(﹣2,2);当y=﹣2时,﹣eq\f(2,3)x2﹣eq\f(4,3)x+2=﹣2,解得:x1=﹣4,x2=2,∴点Q的坐标为(﹣4,﹣2)或(2,﹣2).∴在抛物线上存在点Q,使B、C、P、Q为顶点的四边形为平行四边形,点Q的坐标为(﹣2,2)或(﹣4,﹣2)或(2,﹣2).LISTNUMOutlineDefault\l3解:(1)由题意得:,解得:.∴抛物线L的表达式为y=﹣x2+2x+3;(2)存在以A、B、P、Q四个点为顶点的四边形是菱形.理由:∵点A(﹣1,0),点B(3,0),∴AB=4.如图,当四边形ABQP为菱形时,过点P作PC⊥x轴于点C,令x=0,则y=1,∴D(0,1),∴OD=1,令y=0,则x+1=0,∴x=﹣1,∴A(﹣1,0).∴OA=1.∴OA=OD,∴∠DAO=45°.∵PC⊥x轴,∴PC=AC.∵四边形ABQP为菱形,∴PA=AB=4.∴PC=AC=PA•sin45°=4×eq\f(\r(2),2)=2eq\r(2),∴P(2eq\r(2)﹣1,2eq\r(2)),Q(3+2eq\r(2),2eq\r(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村远程教育工作总结(合集五篇)
- 两分钟爱国演讲稿大全10篇
- 2022泉州幼儿园园务工作计划
- 计算机的实习报告集锦5篇
- 2023-2024学年湖南省长沙市长郡双语雨花中学七年级(上)期末语文试卷
- 信息技术(山东轻工职业学院)知到智慧树答案
- 关于蒙自过桥米线的调查报告
- 椎管肿物病人的护理
- 六、洋快餐现象
- 公文种类及格式
- 椎间孔镜手术配合
- 浙教版九年级科学上册讲练测第4章《代谢与平衡》单元练习(原卷版+解析)
- 地理2021年湖北省普通高中学业水平合格性考试含解析
- 工程化学基础智慧树知到期末考试答案章节答案2024年青岛理工大学
- 2023-2024学年广东省广州市九年级(上)质检英语试卷(1月份)
- 艺术品银行之租赁项目的方案
- GB/T 718-2024铸造用生铁
- 微生物学(细胞型)智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 行政复议法-形考作业4-国开(ZJ)-参考资料
- 内分泌科开展新技术新项目
- 应急管理部宣传教育中心招聘笔试试卷2021
评论
0/150
提交评论