2025届海南省海口市四中数学高一下期末综合测试模拟试题含解析_第1页
2025届海南省海口市四中数学高一下期末综合测试模拟试题含解析_第2页
2025届海南省海口市四中数学高一下期末综合测试模拟试题含解析_第3页
2025届海南省海口市四中数学高一下期末综合测试模拟试题含解析_第4页
2025届海南省海口市四中数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届海南省海口市四中数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或92.已知正数满足,则的最小值是()A.9 B.10 C.11 D.123.已知,则的值域为()A. B. C. D.4.设为中的三边长,且,则的取值范围是()A. B.C. D.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.在中,所对的边分别为,若,,,则()A. B. C.1 D.37.已知,下列不等式中成立的是()A. B. C. D.8.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9.设等差数列的前项的和为,若,,且,则()A. B. C. D.10.已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是.12..已知,若是以点O为直角顶点的等腰直角三角形,则的面积为.13.已知,,则______,______.14.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.15.函数的最小正周期是________.16.数列的前项和为,,且(),记,则的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,(为常数,1,2,3,…),且.(1)求c的值;(2)求证:①;②;(3)比较++…+与的大小,并加以证明.18.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.19.已知.(1)求的值:(2)求的值.20.已知向量与不共线,且,.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.21.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。2、A【解析】

利用基本不等式可得,然后解出即可.【详解】解:正数,满足,∴,,,当且仅当时取等号,的最小值为9,故选:A.【点睛】本题主要考查基本不等式的应用和一元二次不等式的解法,属于基础题.3、C【解析】

由已知条件,先求出函数的周期,由于,即可求出值域.【详解】因为,所以,又因为,所以当时,;当时,;当时,,所以的值域为.故选:C.【点睛】本题考查三角函数的值域,利用了正弦函数的周期性.4、B【解析】

由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【点睛】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.5、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.6、A【解析】

利用三角形内角和为,得到,利用正弦定理求得.【详解】因为,,所以,在中,,所以,故选A.【点睛】本题考查三角形内角和及正弦定理的应用,考查基本运算求解能力.7、A【解析】

逐个选项进行判断即可.【详解】A选项,因为,所以.当时即不满足选项B,C,D.故选A.【点睛】此题考查不等式的基本性质,是基础题.8、D【解析】

试题分析:将函数的图象向右平移,可得,故选D.考点:图象的平移.9、C【解析】,,,,,,故选C.10、D【解析】

作出图形,可知,由四边形的最小面积是,可知此时取最小值,由勾股定理可知的最小值为,即圆心到直线的距离为,结合点到直线的距离公式可求出的值.【详解】如下图所示,由切线长定理可得,又,,且,,所以,四边形的面积为面积的两倍,圆的标准方程为,圆心为,半径为,四边形的最小面积是,所以,面积的最小值为,又,,由勾股定理,当直线与直线垂直时,取最小值,即,整理得,,解得.故选:D.【点睛】本题考查由四边形面积的最值求参数的值,涉及直线与圆的位置关系的应用,解题的关键就是确定动点的位置,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为①③.12、4【解析】由得;由是以为直角顶点的等腰直角三角形,则,.由得.又,则,所以又,则,则,所以所以;则则的面积为13、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.14、.【解析】

设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.15、【解析】

根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.16、3【解析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①见证明;②见证明;(3)++…+,证明见解析【解析】

(1)将代入,结合可求出的值;(2)可知,,即可证明结论;(3)由题意可得,从而可得到,求和可得,然后作差,通过讨论可比较二者大小.【详解】(1)由题意:,.而,得,即,解得或,因为,所以满足题意.(2)因为,所以.则.,因为,,所以,所以.(3)由,可得,从而,所以.因为,所以,所以.,,,,当n=1时,,故;当n=2时,,;当n≥3时,,则,.【点睛】本题主要考查了数列的递推关系式和数列的求和,考查了不等式的证明,考查了学生的逻辑推理能力与计算能力,属于难题.18、(1);(2)【解析】

(1)计算表达出,再根据,两边平方求化简即可求得.(2)根据,再利用余弦的差角公式展开后分别计算求解即可.【详解】(1)由题意,得,,,,.(2),,均为锐角,仍为锐角,,,.【点睛】本题主要考查了根据向量的数量积列出关于三角函数的等式,再利用三角函数中的和差角以及凑角求解的方法.属于中档题.19、(1);(2)【解析】

(1)利用平方关系、诱导公式以及诱导公式即可求解;(2)利用辅助角公式以及二倍角的正弦公式化简即可求值.【详解】(1)因为且所以;(2).【点睛】本题主要考查了三角函数的化简与求值,关键是利用诱导公式、同角三角函数的基本关系以及辅助角公式来求解,属于中档题.20、(1)(2)【解析】

(1)根据平面向量的数量积即可解决.(2)根据两个向量垂直,数量积为0即可解决.【详解】解:(1)(2)由题意可得:,即,,

.【点睛】本题主要考查了平面向量的数量积,及两个向量垂直时数量积为0的情况,属于基础题.21、(1),;(2).【解析】

(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论