2025高考物理实验知识总结压轴题05 动量定理及碰撞类动量守恒定律的应用讲义含答案_第1页
2025高考物理实验知识总结压轴题05 动量定理及碰撞类动量守恒定律的应用讲义含答案_第2页
2025高考物理实验知识总结压轴题05 动量定理及碰撞类动量守恒定律的应用讲义含答案_第3页
2025高考物理实验知识总结压轴题05 动量定理及碰撞类动量守恒定律的应用讲义含答案_第4页
2025高考物理实验知识总结压轴题05 动量定理及碰撞类动量守恒定律的应用讲义含答案_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025高考物理实验知识总结压轴题05动量定理及碰撞类动量守恒定律的应用讲义压轴题05动量定理及碰撞类动量守恒定律的应用考向分析动量定理及动量守恒定律在高考物理中拥有极其重要的地位,它们不仅是力学知识体系的核心组成部分,也是分析和解决物理问题的重要工具。在高考命题中,动量定理及动量守恒定律的考查形式丰富多样。这些考点既可能以选择题、计算题的形式直接检验学生对基本原理的掌握情况,也可能通过复杂的计算题、应用题,要求学生运用动量定理和动量守恒定律进行深入分析和计算。此外,这些考点还经常与其他物理知识点相结合,形成综合性强的题目,以检验学生的综合应用能力。备考时,考生应首先深入理解动量定理和动量守恒定律的基本原理和概念,明确它们的适用范围和条件。其次,考生需要熟练掌握相关的公式和计算方法,并能够在实际问题中灵活运用。此外,考生还应注重解题方法的总结和归纳,特别是对于典型题目的解题思路和方法,要进行反复练习和巩固。知识再析考向一:弹簧类问题中应用动量定理1.动量定理的表达式F·Δt=Δp是矢量式,在一维的情况下,各个矢量必须以同一个规定的方向为正方向。运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。2.动量定理的应用技巧(1)应用I=Δp求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft求冲量,可以求出该力作用下物体动量的变化Δp,等效代换得出变力的冲量I。(2)应用Δp=FΔt求动量的变化考向二:流体类和微粒类问题中应用动量定理1.流体类“柱状模型”问题流体及其特点通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ分析步骤1建立“柱状模型”,沿流速v的方向选取一段柱形流体,其横截面积为S2微元研究,作用时间Δt内的一段柱形流体的长度为Δl,对应的质量为Δm=ρSvΔt3建立方程,应用动量定理研究这段柱状流体2.微粒类“柱状模型”问题微粒及其特点通常电子流、光子流、尘埃等被广义地视为“微粒”,质量具有独立性,通常给出单位体积内粒子数n分析步骤1建立“柱状模型”,沿运动的方向选取一段微元,柱体的横截面积为S2微元研究,作用时间Δt内一段柱形流体的长度为Δl,对应的体积为ΔV=Sv0Δt,则微元内的粒子数N=nv0SΔt3先应用动量定理研究单个粒子,建立方程,再乘以N计算考向三:碰撞类和类碰撞类问题中应用动量守恒定律1.碰撞三原则:(1)动量守恒:即p1+p2=p1′+p2′.(2)动能不增加:即Ek1+Ek2≥Ek1′+Ek2′或eq\f(p\o\al(2,1),2m1)+eq\f(p\o\al(2,2),2m2)≥eq\f(p1′2,2m1)+eq\f(p2′2,2m2).(3)速度要合理①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。2.“动碰动”弹性碰撞v1v2v1’ˊv2’ˊm1m2发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m1和m2v1v2v1’ˊv2’ˊm1m2(1)(2)联立(1)、(2)解得:v1’=,v2’=.特殊情况:若m1=m2,v1ˊ=v2,v2ˊ=v1.3.“动碰静”弹性碰撞的结论两球发生弹性碰撞时应满足动量守恒和机械能守恒。以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′(1)eq\f(1,2)m1veq\o\al(2,1)=eq\f(1,2)m1v1′2+eq\f(1,2)m2v2′2(2)解得:v1′=eq\f((m1-m2)v1,m1+m2),v2′=eq\f(2m1v1,m1+m2)结论:(1)当m1=m2时,v1′=0,v2′=v1(质量相等,速度交换)(2)当m1>m2时,v1′>0,v2′>0,且v2′>v1′(大碰小,一起跑)(3)当m1<m2时,v1′<0,v2′>0(小碰大,要反弹)(4)当m1≫m2时,v1′=v0,v2′=2v1(极大碰极小,大不变,小加倍)(5)当m1≪m2时,v1′=-v1,v2′=0(极小碰极大,小等速率反弹,大不变)01应用动量定理处理蹦极类问题1.蹦极是一项非常刺激的户外休闲活动。图甲为蹦极的场景,一游客从蹦极台下落的速度一位移图象如图乙所示。已知弹性轻绳的弹力与伸长量的关系符合胡克定律,游客及携带装备的总质量为,弹性轻绳原长为,若空气阻力恒定,游客下落至处时速度大小为,重力加速度取,下列正确的是()A.整个下落过程中,游客先处于失重后处于超重状态B.游客及携带装备从静止开始下落的过程中重力的冲量为C.游客在最低点时,弹性势能最大为D.弹性绳长为时,游客的加速度大小为【答案】A【详解】A.由题图乙可知游客从蹦极台下落过程先加速后减速,即先有向下的加速度后有向上的加速度,所以游客先处于失重后处于超重状态,故A正确;B.以游客及携带装备为研究对象,从静止开始下落15m的过程中,由动量定理得I合=IG-IF-If=mv=50×15N·s=750N·s故重力的冲量大于750N·s,故B错误;C.游客在前5m做匀加速直线,根据动能定理解得f=50N从下落至最低点过程中能量守恒解得=500×26-50×26=11700J故C错误;D.游客下落15m时合力为0时速度最大,此时弹性绳的弹力和阻力等于游客及携带装备的总重力,即f+kΔx=mg解得k==45N/m弹性绳长为20m时,弹性绳的弹力F=kΔx′=45×(20-10)N=450N根据牛顿第二定律得F+f-mg=ma解得a=0m/s2故D错误。故选A。02应用动量定理处理流体类问题2.雨打芭蕉是中国古代文学中常见的抒情意象,为估算雨滴撞击芭蕉叶产生的平均压强p,小明将一圆柱形量筒置于雨中,测得时间t内筒中水面上升的高度为h,设雨滴下落的速度为,雨滴竖直下落到水平芭蕉叶上后以速率v竖直反弹,雨水的密度为,不计雨滴重力。压强p为()A. B.C. D.【答案】B【详解】以极短时间内落至芭蕉叶上的雨滴的质量为,雨滴与芭蕉叶作用的有效面积为S,根据动量定理有由于圆柱形量筒置于雨中,测得时间t内筒中水面上升的高度为h,则单位面积单位时间内下落的雨水质量为则以极短时间内落至芭蕉叶上的雨滴的质量根据牛顿第三定律有雨滴撞击芭蕉叶产生的平均压强解得故选B。03分方向动量定理应用问题3.如图所示,实线是实验小组某次研究平抛运动得到的实际轨迹,虚线是相同初始条件下平抛运动的理论轨迹。分析后得知这种差异是空气阻力影响的结果。实验中,小球的质量为m,水平初速度为,初始时小球离地面高度为h。已知小球落地时速度大小为v,方向与水平面成角,小球在运动过程中受到的空气阻力大小与速率成正比,比例系数为k,重力加速度为g。下列说法正确的是()A.小球落地时重力的功率为B.小球下落的时间为C.小球下落过程中的水平位移大小为D.小球下落过程中空气阻力所做的功为【答案】B【详解】A.小球落地时重力的功率为故A错误;B.小球下落过程在竖直方向根据动量定理解得小球下落的时间为故B正确;C.小球在水平方向根据动量定理解得小球下落过程中的水平位移大小为故C错误;D.小球下落过程根据动能定理解得小球下落过程中空气阻力所做的功为故D错误。故选B。04弹性碰撞类问题4.如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向、碰撞时间均可忽略不计。已知m2=3m1,则A反弹后能达到的高度为()A.h B.2h C.3h D.4h【答案】D【详解】下降过程为自由落体运动,由匀变速直线运动的速度位移公式得v2=2gh解得触地时两球速度相同,为m2碰撞地之后,速度瞬间反向,大小相等,选m1与m2碰撞过程为研究过程,碰撞前后动量守恒,设碰后m1、m2速度大小分别为v1、v2,选向上方向为正方向,由动量守恒定律得:m2v-m1v=m1v1+m2v2由能量守恒定律得由题可知m2=3m1联立解得反弹后高度为故D正确,ABC错误。故选D。05完全非弹性碰撞类问题5.如图所示,光滑水平面的同一直线上放有n个质量均为m的小滑块,相邻滑块之间的距离为L,某个滑块均可看成质点。现给第一个滑块水平向右的初速度,滑块间相碰后均能粘在一起,则从第一个滑块开始运动到第个滑块与第n个滑块相碰时的总时间为()

A. B. C. D.【答案】B【详解】由于每次相碰后滑块会粘在一起,根据动量守恒定律可知第二个滑块开始运动的速度大小为同理第三个滑块开始滑动的速度大小为第(n-1)个球开始滑动的速度大小为因此运动的总时间为故选B。06斜面类类碰撞问题6.如图甲所示,曲面为四分之一圆弧、质量为M的滑块静止在光滑水平地面上,一光滑小球以某一速度水平冲上滑块的圆弧面,且没有从滑块上端冲出去,若测得在水平方向上小球与滑块的速度大小分别为v1、v2,作出图像如图乙所示,重力加速度为g,不考虑任何阻力,则下列说法不正确的是()A.小球的质量为B.小球运动到最高点时的速度为C.小球能够上升的最大高度为D.若a>b,小球在与圆弧滑块分离后向左做平抛运动【答案】C【详解】A.设小球的质量为m,初速度为v0,在水平方向上由动量守恒定律得结合图乙可得所以,故A正确,不符合题意;D.对小球和圆弧滑块组成的系统,有解得小球在与圆弧滑块分离时的速度为即a>b时,小球的速度方向向左,所以小球与圆弧分离时向左做平抛运动,故D正确,不符合题意;B.小球运动到最高点时,竖直方向速度为零,在水平方向上与滑块具有相同的速度,在水平方向上由动量守恒定律得解得故B正确,不符合题意;C.小球从开始运动到最高点的过程中,由机械能守恒定律得解得故C错误,符合题意。故选C。07弹簧类类碰撞问题7.如图甲所示,物块A、B的质量均为2kg,用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁接触但不黏连。物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与物块A粘在一起不再分开,物块C的v-t图像如图乙所示。下列说法正确的是()A.物块C的质量为2kgB.物块B离开墙壁前,弹簧的最大弹性势能为40.5JC.4s到12s的时间内,墙壁对物块B的冲量大小为0D.物块B离开墙壁后,物块B的最大速度大小为3.6m/s【答案】D【详解】A.由图知,C与A碰前速度为,碰后速度为,C与A碰撞过程动量守恒,以C的初速度方向为正方向,由动量守恒定律解得故A错误;B.AC粘在一起速度变为0时,弹簧的弹性势能最大,为故B错误;C.由图知,12s末A和C的速度为,4s到12s过程中墙壁对物体B的冲量大小等于弹簧对物体B的冲量大小,也等于弹簧对A和C整体的冲量大小,墙对B的冲量为解得方向向左,故C错误;D.物块B刚离时,由机械能守恒定律可得,AC向左运动的速度大小为3m/s,物块B离开墙壁后,系统动量守恒、机械能守恒,当弹簧再次恢复原长时,物体B的速度最大,则有代入数据解得物块B的最大速度为3.6m/s,故D正确。故选D。好题速练1.(2019·湖南长沙·一模)一质量为m1的物体以v0的初速度与另一质量为m2的静止物体发生碰撞,其中m2=km1,k<1。碰撞可分为完全弹性碰撞、完全非弹性碰撞以及非弹性碰撞。碰撞后两物体速度分别为v1和v2.假设碰撞在一维上进行,且一个物体不可能穿过另一个物体。物体1碰撞后与碰撞前速度之比的取值范围是()A. B.C. D.【答案】B【详解】若发生弹性碰撞,则由动量守恒m1v0=m1v1+m2v2由能量关系解得物体1碰撞后与碰撞前速度之比若发生完全非弹性碰撞,则由动量守恒m1v0=(m1+m2)v解得物体1碰撞后与碰撞前速度之比所以,物体1碰撞后与碰撞前速度之比的取值范围是故B正确,ACD错误。故选B。2.(2024高三·安徽滁州·模拟预测)蹦极是一项刺激的户外休闲活动,足以使蹦极者在空中体验几秒钟的“自由落体”。如图所示,蹦极者站在高塔顶端,将一端固定的弹性长绳绑在踝关节处。然后双臂伸开,双腿并拢,头朝下跳离高塔。设弹性绳的原长为,蹦极者下落第一个时动量的增加量为,下落第五个时动量的增加量为,把蹦极者视为质点,蹦极者离开塔顶时的速度为零,不计空气阻力,则满足()A. B. C. D.【答案】D【详解】蹦极者下落高度的过程,可视为做自由落体运动,对于初速度为零的匀加速直线运动,通过连续相等位移的时间之比为可知即由动量定理得故故选D。3.(2024·山东临沂·一模)列车在水平长直轨道上的模拟运行图如图所示,列车由质量均为m的5节车厢组成,假设只有1号车厢为动力车厢。列车由静止开始以额定功率P运行,经过一段时间达到最大速度,列车向右运动过程中,1号车厢会受到前方空气的阻力,假设车厢碰到空气前空气的速度为0,碰到空气后空气的速度立刻与列车速度相同,已知空气密度为。1号车厢的迎风面积(垂直运动方向上的投影面积)为S,不计其他阻力,忽略2号、3号、4号、5号车厢受到的空气阻力。当列车以额定功率运行到速度为最大速度的一半时,1号车厢对2号车厢的作用力大小为()A. B. C. D.【答案】B【详解】设动车的速度为v,动车对空气的作用力为F,取时间内空气柱的质量为,对一小段空气柱应用动量定理可得其中解得由牛顿第三定律可得,空气对动车的阻力为当牵引力等于阻力时,速度达到最大,则解得当速度达到最大速度一半时,此时速度为此时受到的牵引力解得此时受到的阻力对整体根据牛顿第二定律对1号车厢,根据牛顿第二定律可得联立解得当列车以额定功率运行到速度为最大速度的一半时,由牛顿第三定律,1号车厢对2号车厢的作用力大小为故选B。4.(2024·北京顺义·一模)1899年,苏联物理学家列别捷夫首先从实验上证实了“光射到物体表面上时会产生压力”,和大量气体分子与器壁的频繁碰撞类似,将产生持续均匀的压力,这种压力会对物体表面产生压强,这就是“光压”。某同学设计了如图所示的探测器,利用太阳光的“光压”为探测器提供动力,以使太阳光对太阳帆的压力超过太阳对探测器的引力,将太阳系中的探测器送到太阳系以外。假设质量为m的探测器正朝远离太阳的方向运动,帆面的面积为S,且始终与太阳光垂直,探测器到太阳中心的距离为r,不考虑行星对探测器的引力。已知:单位时间内从太阳单位面积辐射的电磁波的总能量与太阳绝对温度的四次方成正比,即,其中T为太阳表面的温度,为常量。引力常量为G,太阳的质量为M,太阳的半径为R,光子的动量,光速为c。下列说法正确的是()A.常量的单位为B.t时间内探测器在r处太阳帆受到太阳辐射的能量C.若照射到太阳帆上的光一半被太阳帆吸收一半被反射,探测器太阳帆的面积S至少为D.若照射到太阳帆上的光全部被太阳帆吸收,探测器在r处太阳帆受到的太阳光对光帆的压力【答案】D【详解】A.P0是单位时间从太阳单位面积辐射的电磁波的能量,所以单位为,则则常量的单位为故A错误;B.t时间内探测器在r处太阳帆受到太阳辐射的能量故B错误;C.辐射到太阳帆的光子的总数一半光子被吸收,一半反射,则有其中联立可得故C错误;D.若照射到太阳帆上的光全部被太阳帆吸收,则有可得探测器在r处太阳帆受到的太阳光对光帆的压力故D正确。故选D。6.(2024·江西·一模)如图所示,假设入射光子的动量为p0,光子与静止的电子发生弹性碰撞。碰后光子的动量大小为p1,传播方向与入射方向夹角为α:碰后电子的动量大小为p2,出射方向与光子入射方向夹角为β。已知光速为c,普朗克常量为h,下列说法正确的是()A.碰前入射光的波长为 B.碰后电子的能量为C. D.【答案】C【详解】A.根据德布罗意公式可知,碰前入射光的波长为选项A错误;

B.设电子的质量为m,则碰后电子的能量为选项B错误;CD.沿光子入射方向的动量守恒,根据动量守恒定律可知选项C正确,D错误。故选C。7.(2024高三下·江西·开学考试)如图所示,平面(纸面)第一象限内有足够长且宽度均为、边界均平行轴的区域Ⅰ和Ⅱ,其中区域Ⅰ存在磁感应强度大小为、方向垂直纸面向里的匀强磁场,区域Ⅱ存在磁感应强度大小、方向垂直纸面向外的匀强磁场,区域Ⅱ的下边界与轴重合。位于处的离子源能释放出质量为、电荷量为、速度方向与轴夹角为的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。下列说法正确的是(

)A.速度大小为的离子不能进入区域ⅡB.速度大小为的离子在磁场中的运动时间为C.恰能到达轴的离子速度大小为D.恰能到达轴的离子速度大小为【答案】ABC【详解】AB.当离子不进入磁场Ⅱ速度最大时,轨迹与边界相切,如图1则由几何关系解得根据解得在磁场中运动的周期所有速度小于的离子都未进入Ⅱ区,速度偏转角都为,运动时间都为故AB正确;CD.,且磁场Ⅱ方向向外,则离子进磁场Ⅱ后顺时针偏转,离子恰到轴时速度与轴平行,如图2取水平向右为正方向,全过程在水平方向由动量定理有解得故C正确,D错误。故选ABC。8.(2024·黑龙江哈尔滨·二模)如图所示,空间等距分布垂直纸面向里的匀强磁场,竖直方向磁场区域足够长,磁感应强度大小,每一条形磁场区域宽度及相邻条形磁场区域间距均为。现有一个边长、质量、电阻的单匝正方形线框,以的初速度从左侧磁场边缘水平进入磁场,以下说法正确的是()A.线框进入第一个磁场区域过程中,通过线框的电荷量B.线框刚进入第一个磁场区域时,安培力大小为C.线框从开始进入磁场到竖直下落的过程中产生的焦耳热D.线框从开始进入磁场到竖直下落的过程中能穿过2个完整磁场区域【答案】ACD【详解】A.线框进入第一个磁场区域过程中,通过线框的电荷量为故A正确;B.线框刚进入第一个磁场区域时,产生的电动势为线框受到的安培力大小为故B错误;C.线框从开始进入磁场到竖直下落的过程中,由于线框上下两边总是同时处在磁场中,则上下两边受到的安培力相互抵消,即线框竖直方向只受重力作用,可认为竖直方向做自由落体运动;水平方向在安培力作用下做减速运动,当水平方向的速度减为零时,线框开始竖直下落;则线框从开始进入磁场到竖直下落的过程中产生的焦耳热为故C正确;D.线框从开始进入磁场到竖直下落的过程中,水平方向根据动量定理可得又联立解得线框穿过1个完整磁场区域,有安培力作用的水平距离为,由于可知线框从开始进入磁场到竖直下落的过程中能穿过2个完整磁场区域,故D正确。故选ACD。9.(2024·湖北·二模)如图所示,质量分别为m、3m、nm的圆弧槽、小球B、小球C均静止在水平面上,圆弧槽的半径为R,末端与水平面相切。现将质量为m的小球A从圆弧槽上与圆心等高的位置由静止释放,一段时间后与B发生弹性正碰,已知重力加速度为g,不计A、B、C大小及一切摩擦。下列说法正确的是()A.小球A通过圆弧槽最低点时对圆弧槽的压力大小为mgB.若BC发生的是完全非弹性碰撞,n取不同值时,BC碰撞损失的机械能不同C.若BC发生的是弹性正碰,当时,碰撞完成后小球C的速度为D.n取不同值时,C最终的动量不同,其最小值为【答案】BCD【详解】A.小球A第一次下滑到圆弧槽最低点时,小球A和圆弧槽组成的系统水平方向上动量守恒,有根据小球A和圆弧槽组成的系统机械能守恒有解得小球A通过圆弧槽最低点时,相对于圆弧槽的速度大小为根据牛顿第二定律有联立解得,小球A通过圆弧槽最低点时,受到圆弧槽的支持力为则小球A通过圆弧槽最低点时对圆弧槽的压力大小为5mg,故A错误;B.若BC发生的是完全非弹性碰撞,设小球A与B碰撞后,小球B的初速度为,则BC碰撞过程,根据动量守恒有根据能量守恒有联立解得,BC碰撞损失的机械能为可知,当n取不同值时,BC碰撞损失的机械能不同,故B正确;C.小球A与B发生弹性正碰,取向右为正方向,根据动量守恒有根据机械能守恒有联立解得,若BC发生的是弹性正碰,当时,BC碰撞过程,根据动量守恒有根据机械能守恒有联立解得,碰撞完成后小球C的速度为故C正确;D.当BC发生的是完全非弹性正碰时,C获得的动量最小。BC碰撞过程,根据动量守恒有解得,碰撞完成后小球C的速度为则此时C的动量为可知,当n取1时,C的动量取最小值为故D正确。故选BCD。10.(2024·湖南岳阳·二模)如图所示,倾角为的足够长的斜面上放有质量均为m相距为L的AB滑块,其中滑块A光滑,滑块B与斜面间的动摩擦因数为,。AB同时由静止开始释放,一段时间后A与B发生第一次碰撞,假设每一次碰撞时间都极短,且都是弹性正碰,重力加速度为g,下列说法正确的是(

)A.释放时,A的加速度为 B.第一次碰后A的速度为C.从开始释放到第一次碰撞的时间间隔为 D.从开始释放到第二次碰撞的时间间隔为【答案】AC【详解】A.A物体沿斜面下滑时,根据牛顿第二定律解得故A正确;C.对A滑块,设从开始释放A与B第一次碰撞所用时间为,根据运动学故C正确;B.第一次碰撞前,A的速度为设第一碰后A的速度为,B的速度为,则碰撞过程根据动量守恒和动能守恒联立解得故B错误;D.B物体沿斜面下滑时有解得两物体相碰后,A物体的速度变为零,以后再做匀加速运动,而B物体将以的速度沿斜面向下做匀速直线运动。设再经t2时间相碰,则有解得故从A开始运动到两物体第二次相碰,共经历时间故D错误。故选AC。11.(2024高三下·山西晋中·开学考试)如图所示,质量为的物块P与长木板Q之间有一轻弹簧,静止在光滑的水平地面上,P与弹簧拴接,Q与弹簧接触但不拴接,Q的上表面粗糙。时,物块P以初速度向左运动,时间内物块P与长木板Q的图像如图所示,时刻,把质量为的物块M放在Q的最左端,图中未画出,M最终未从Q上滑出,则(

A.物体Q的质量为B.时刻弹簧的弹性势能为C.M和Q之间由于摩擦作用的发热量为D.弹簧可以和Q发生二次作用【答案】AC【详解】A.时刻,所受弹力最大且大小相等,由牛顿第二定律可得则物体的质量为,故A正确;B.时刻,弹簧压缩到最短,和速度相等,根据动量守恒根据能量守恒可得最大弹性势能为故B错误;C.时间内,根据动量守恒根据机械能守恒联立解得2t0时刻,和弹簧分离,和之间动量守恒,有解得产生的热量为故C正确;D.由上分析可知和共速时弹簧不能和发生二次作用,故D错误。故选AC。12.(2024·湖南长沙·二模)如图甲,质量分别为mA和mB的A、B两小球用轻质弹簧连接置于光滑水平面上,初始时刻两小球被分别锁定,此时弹簧处于压缩状态。t=0时刻解除A球锁定,t=t1时刻解除B球锁定,A、B两球运动的a-t图像如图乙所示,S1表示0到t1时间内A的a-t图线与坐标轴所围面积大小,S2、S3分别表示t1到t2时间内A、B的a-t图线与坐标轴所围面积大小。下列说法正确的是()

A.t1时刻后A、B系统的总动量大小始终为mAS1 B.C. D.t2时刻,弹簧伸长量大于0时刻的压缩量【答案】AB【详解】A.a-t图像的面积等于这段时间的速度变化量大小,t=0时刻解除A球锁定,t=t1时刻解除B球锁定,说明t1时刻只有A球具有速度,设此时A球的速度为v1,则有t1时刻后A、B组成的系统满足动量守恒,故总动量等于t1时刻A球的动量,则有故A正确;B.由图像可知t1时刻A球的加速度为0,则此时弹簧弹力等于0,即弹簧处于原长状态,t2时刻两球的加速度都达到最大,说明此时弹簧的弹力最大,弹簧的伸长量最大,即t2时刻两球具有相同的速度,设t2时刻A、B两球的速度为v2,从t1到t2过程,A球的速度变化量大小为B球的速度变化量大小为从t1到t2过程,A、B组成的系统满足动量守恒,则有可得联立可得故B正确;C.t=0到t1时刻,A球速度变化量大小为从t1到t2过程,A球的速度变化量大小为从t1到t2过程,B球的速度变化量大小为联立可得故C错误;D.从t=0到t2时刻,A、B、弹簧组成的系统满足机械能守恒,则有说明t=0时刻弹簧的弹性势能大于t2时刻弹簧的弹性势能,即t=0时刻弹簧的压缩量大于t2时刻弹簧的伸长量,故D错误。故选AB。13.(2024·广东茂名·二模)甲、乙两位同学利用中国象棋进行游戏。某次游戏中,在水平放置的棋盘上,甲用手将甲方的棋子以0.4m/s的初速度正对乙方棋子弹出,两棋子相碰撞后(碰撞时间极短),甲方棋子速度大小变为0.1m/s,方向不变.两棋子初始位置如图所示,棋子中心与网格线交叉点重合,该棋盘每方格长宽均,棋子直径均为,棋子质量相等均为,棋子与棋盘间的动摩擦因数均为。重力加速度g大小取。求:(1)甲、乙两棋子相碰时损失的机械能;(2)通过计算,判断乙方棋子中心是否滑出边界;(3)甲方棋子从弹出到停下所需的时间。(计算结果保留2位有效数字)【答案】(1);(2)不滑出边界;(3)【详解】(1)设甲、乙两棋子碰撞前瞬间甲棋子的速度大小为,从甲棋子开始运动到甲、乙碰撞前瞬间过程,甲移动距离为对甲棋子,由动能定理得代入数据解得甲、乙两棋子碰撞过程系统内力远大于外力,系统动量守恒,设碰撞后瞬间乙棋子的速度大小为,以碰撞前甲棋子的速度方向为正方向,由动量守恒定律得代入数据解得碰撞过程中损失的机械能为解得(2)设乙棋子碰后运动距离停下来,对乙棋子,由动能定理得解得即可乙棋子移动距离不够1方格,棋子中心不滑出边界。(3)对甲棋子从弹出到碰撞前,列动量定理有解得碰撞后,对甲棋子,列动量定理有解得甲方棋子从弹出到停下所需的时间为14.(2024·山西临汾·二模)如图所示,倾角为的固定斜面的底端安装一个弹性挡板,质量分别m和4m的物块a、b置于斜面上,a与斜面间无摩擦,b与斜面间的动摩擦因数等于。两物块之间夹有一个劲度系数很大且处于压缩状态的轻质短弹簧(长度忽略不计),弹簧被锁定。现给两物块一个方向沿斜面向下、大小为的初速度,同时解除弹簧锁定,弹簧瞬间完全释放弹性势能,并立即拿走弹簧。物块a与挡板、a与b之间的碰撞均无机械能的损失,弹簧锁定时的弹性势能为,重力加速度为g。求:(1)弹簧解除锁定后的瞬间a、b的速度大小;(2)解除锁定,a与b第一次碰撞后,b沿斜面上升的最大高度。【答案】(1),;(2)【详解】(1)由于弹簧在瞬间解除锁定,在此瞬间内力远大于外力,a、b系统动量守恒,以沿斜面向下为正方向,有根据能量守恒解得,(另一组解不符合实际,舍去。)(2)弹簧瞬间解除锁定后,由于b与斜面的摩擦因数,解除锁定后b保持静止。由于a与斜面间无摩擦,a沿斜面匀加速下滑,与挡板碰撞后原速率反弹,再沿斜面匀减速上滑,直到与b发生碰撞。根据机械能守恒,a与b碰撞前的速度大小仍为,根据动量守恒和能量守恒有解得(向下),之后,对b,根据动能定理解得15.(2024·重庆·模拟预测)如题图所示,一边长为的正方体物块静置于足够长的光滑水平面上,该正方体物块内有一条由半径为四分之一圆弧部分和竖直部分平滑连接组成的细小光滑圆孔道。一质量为的小球(可视为质点),以初速度沿水平方向进入孔道,恰好能到达孔道最高点。孔道直径略大于小球直径,孔道粗细及空气阻力可不计,重力加速度为g。(1)求该正方体物块的质量;(2)求小球离开孔道时的速度;(3)小球从进入孔道至到达孔道最高点的过程中,小球在孔道圆弧部分运动的时间为,求小球到达孔道最高点时,该正方体物块移动的距离。【答案】(1);(2),方向水平向右;(3)【详解】(1)小球从进入孔道至到达最高点过程中,小球和物块组成的系统机械能守恒、水平方向动量守恒,以水平向右为正方向,则有,解得,(2)小球从进入孔道到离开孔道过程中,小球和物块组成的系统机械能守恒、水平方向动量守恒,以水平向右为正方向,则有,解得,即小球离开孔道时速度大小为,方向与初速度相同,即水平向右。(3)小球从进入孔道至到达孔道圆弧部分最高点的过程中,小球和物块组成的系统水平方向动量始终守恒,则有小球在孔道圆弧部分运动的时间为,则有其中,该时间内,小球和物块的相对位移为解得小球离开孔道圆弧部分至到达孔道最高点过程中,小球在竖直方向做竖直上抛运动,则有该过程中,物块在水平方向做匀速直线运动,此过程物块的位移其中解得综上可知,小球到达孔道最高点时,物块移动的距离解得16.(2024·湖北武汉·模拟预测)如图所示,轨道ABCD由半径的光滑四分之一圆弧轨道AB、长度的粗糙水平轨道BC以及足够长的光滑水平轨道CD组成。质量的物块P和质量的物块Q压缩着一轻质弹簧并锁定(物块与弹簧不连接),三者静置于CD段中间,物块P、Q可视为质点。紧靠D的右侧水平地面上停放着质量的小车,其上表面EF段粗糙,与CD等高,长度;FG段为半径的四分之一光滑圆弧轨道;小车与地面间的阻力忽略不计。P、Q与BC、EF间的动摩擦因数均为,重力加速度,现解除弹簧锁定,物块P、Q由静止被弹出(P、Q脱离弹簧后立即撤走弹簧),其中物块P进入CBA轨道,而物块Q滑上小车。不计物块经过各连接点时的机械能损失。(1)若物块P经过CB后恰好能到达A点,求物块P通过B点时,物块P对圆弧轨道的弹力;(2)若物块P经过CB后恰好能到达A点,试分析物块Q能否冲出小车上的G点,若能冲出G点,求出物块Q从飞离G点到再次回到G点过程中小车通过的位移;若物块Q不能飞离G点,请说明理由;(3)若弹簧解除锁定后,物块Q向右滑上小车后能通过F点,并且后续运动过程始终不滑离小车,求被锁定弹簧的弹性势能取值范围。【答案】(1)60N,方向竖直向下;(2)能,;(3)【详解】(1)物块P从B到A过程,根据动能定理有物块P在B点,根据牛顿第二定律有解得根据牛顿第三定律,物块对轨道的压力大小60N,方向竖直向下;(2)物块P被弹出到运动到A过程,根据动能定理有解得对P、Q构成的系统,根据动量守恒定律有解得对Q与小车构成的系统,在水平方向,根据动量守恒定律有解得根据能量守恒定律有解得物块P运动时间为(3)物块被弹开过程有当物块Q向右滑上小车后恰好到达F点与小车共速时,弹簧弹性势能最小,此时,对物块Q与小车有解得由于当物块Q冲上FG圆弧没有越过G点之后又返回E点与小车共速时,弹簧弹性势能达到最大值,则弹簧弹开两物块过程有当物块Q冲上FG圆弧没有越过G点之后又返回E点与小车共速过程有解得综合上述,被锁定弹簧的弹性势能的取值范围为压轴题06静电场中力和能性质的综合应用考向分析在高考物理中,静电场中力的性质和能的性质占据着重要的地位,它们不仅是电学部分的核心内容,也是理解和应用电学知识的基础。在命题方式上,高考对于静电场中力的性质和能的性质的考查通常涉及电场强度、电场力、电势能、电势等基本概念的理解和应用。这些考点可能会以选择题、计算题等多种形式出现,题目设计注重考查学生对电场力做功、电场强度与电荷量、电势能与电势差等关系的理解和应用。备考时,学生应首先深入理解静电场中力的性质和能的性质的基本概念和原理,掌握电场强度、电场力、电势能、电势等基本概念的定义、计算公式和物理意义。同时,学生还应注重实践应用,通过大量练习和模拟考试,熟悉各种题型的解题方法和技巧,提高解题能力和速度。知识再析考向一:电场中的一线一面一轨迹问题1.两种等量点电荷的电场强度及电场线的比较比较等量异种点电荷等量同种点电荷电场线分布图电荷连线上的电场强度沿连线先变小后变大O点最小,但不为零O点为零中垂线上的电场强度O点最大,向外逐渐减小O点最小,向外先变大后变小关于O点对称位置的电场强度A与A'、B与B'、C与C'等大同向等大反向2.“电场线+运动轨迹”组合模型模型特点:当带电粒子在电场中的运动轨迹是一条与电场线不重合的曲线时,这种现象简称为“拐弯现象”,其实质为“运动与力”的关系。运用牛顿运动定律的知识分析:(1)“运动与力两线法”——画出“速度线”(运动轨迹在某一位置的切线)与“力线”(在同一位置电场线的切线方向且指向轨迹的凹侧),从二者的夹角情况来分析带电粒子做曲线运动的情况。(2)“三不知时要假设”——电荷的正负、电场的方向、电荷运动的方向,是题目中相互制约的三个方面。若已知其中一个,可分析判定各待求量;若三个都不知(三不知),则要用“假设法”进行分析。3.几种典型电场的等势面电场等势面重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上电势处处为零等量同种(正)点电荷的电场两点电荷连线上,中点的电势最低;中垂线上,中点的电势最高4.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负。(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等。(3)根据动能定理或能量守恒定律判断动能的变化情况。考向二:电场中的三类图像(一)φ-x图像1.电场强度的大小等于φ-x图线的斜率的绝对值,电场强度为零处,φ-x图线存在极值,其切线的斜率为零。2.在φ-x图像中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向。3.在φ-x图像中分析电荷移动时电势能的变化,可用WAB=qUAB,进而分析WAB的正负,然后作出判断。(二)Ep-x图像1.根据电势能的变化可以判断电场力做功的正负,电势能减少,电场力做正功:电势能增加,电场力做负功。2.根据ΔEp=-W=-Fx,图像Ep-x斜率的绝对值表示电场力的大小。(三)E-x图像1.E-x图像反映了电场强度随位移变化的规律,E>0表示电场强度沿x轴正方向;E<0表示电场强度沿x轴负方向。2.在给定了电场的E-x图像后,可以由图线确定电场强度的变化情况,电势的变化情况,E-x图线与x轴所围图形“面积”表示电势差,两点的电势高低根据电场方向判定。在与粒子运动相结合的题目中,可进一步确定粒子的电性、动能变化、电势能变化等情况。3.在这类题目中,还可以由E-x图像画出对应的电场,利用这种已知电场的电场线分布、等势面分布或场源电荷来处理相关问题。考向三:电场中带电体的各类运动1.做直线运动的条件(1)粒子所受合外力F合=0,粒子或静止,或做匀速直线运动。(2)匀强电场中,粒子所受合外力F合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。2.用动力学观点分析:a=eq\f(qE,m),E=eq\f(U,d),v2-v02=2ad(匀强电场)。3.用功能观点分析:匀强电场中W=Eqd=qU=eq\f(1,2)mv2-eq\f(1,2)mv02;非匀强电场中W=qU=Ek2-Ek1。带电粒子在电场中的抛体运动:类比平抛运动,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀变速运动。带电小球在电场中的圆周运动:01等量异种电荷的电场1.太极图的含义丰富而复杂,它体现了中国古代哲学的智慧。如图所示,O为大圆的圆心,为上侧阳半圆的圆心,为下侧阴半圆的圆心,O、,在同一直线上,AB为大圆的直径且与连线垂直,C、D为关于O点对称的两点,在,两点分别固定电荷量大小相等的异种点电荷,整个空间只有、处点电荷产生的电场。下列说法正确的是()A.C、D两点电势相等B.把电子由A沿直线移到B的过程中,电子的电势能先增加后减小C.把质子由A沿直线移到B的过程中,质子所受电场力先增加后减小D.将一电子(不计重力)从A点由静止释放,电子可以沿直线在AB间做往返运动【答案】C【详解】A.在,两点分别固定电荷量大小相等的异种点电荷,设处为正点电荷,处为负点电荷,由于C点靠近正点电荷,D点靠近负点电荷,则C点电势高于D点电势,故A错误;B.AB为等量异种电荷连线的中垂线,根据等量异种电荷电势分布特点可知,中垂线为一等势线,所以把电子由A沿直线移到B的过程中,电子的电势能保持不变,故B错误;C.根据等量异种电荷中垂线电场分布特点可知,O点为中垂线上场强最大的点,则把质子由A沿直线移到B的过程中,场强先变大后变小,质子所受电场力先增加后减小,故C正确;D.由于根据等量异种电荷中垂线上的场强方向与中垂线垂直,所以将一电子(不计重力)从A点由静止释放,在A处受到的电场力与AB直线垂直,电子不可能沿直线在AB间做往返运动,故D错误。故选C。02等量同种电荷的电场2.如图所示,空间立方体的棱长为a,O、P分别为立方体上下表面的中心,在两条竖直边MN和FG的中点处分别固定甲和乙两个带电荷量均为q的负点电荷,上下表面中心连线OP所在直线上O点的上方有一点S(图中未画出),S到O点的距离为r,电子的电荷量为e,静电力常量为k,下列说法正确的是()

A.重力不计、比荷为的电荷沿OP所在直线运动时,在O和P点的加速度最大,最大值为B.在S点固定一个电荷量为4q的负电荷,当时,O点的电场强度恰好等于零C.在S点固定一个电荷量为4q的负电荷,无论r为何值,比荷为的电荷在M点的电势能总大于在F点的电势能D.在立方体所在空间加一方向竖直向上、电场强度为E的匀强电场,将一电子由M移动到G时,电子的电势能减少了【答案】A【详解】A.如图所示,连接甲乙,设OP所在直线上某点Q(图中未画出)与甲乙连线的夹角为θ,甲乙两电荷间的距离为L,利用点电荷电场场强决定式和平行四边形定则可求出Q点电场强度大小的表达式为令,则有解得当时该点的场强最大,将代入以上关系式可求得最大值为作图如图所示

根据几何关系可求Q点到甲乙连线中点的距离为可见Q点跟O点重合,可知在甲乙等量同种电荷电场中O、P两点的场强最大,最大值为根据牛顿第二定律可求得比重力不计、比荷为的电荷沿OP所在直线运动时,在O和P点的加速度最大,最大值为,A正确;B.在S点固定一个电荷量为4q的负电荷,O点的电场强度恰好等于零,有解得B错误;C.在S点固定一个电荷量为4q的负电荷,根据电场的对称性特点可知,无论r为何值,M点和F点的电势总相等,所以比荷为的电荷在M点和F点的电势能总是相等的,C错误;D.在立方体所在空间加一方向竖直向上、电场强度为E的匀强电场,将一电子由M移动到G,根据对称性可知,甲乙电荷电场中M、G两点电势相等,则所加电场的电场力对电子做正功所以电子的电势能减少了eEa,D错误。故选A。03等势面及轨迹问题3.在示波器、电子显微镜等器件中都需要将电子束聚焦,常采用的聚焦装置之一是静电透镜。静电透镜内电场分布的截面图如图中所示,虚线为等势面,实线为电场线,相邻等势面间电势差相等。现有一束电子以某一初速度从左侧进入该区域,P、Q为电子运动轨迹上的两点。下列说法正确的是()A.P点的电场强度大于Q点的电场强度B.P点的电势高于Q点的电势C.电子在P点的电势能小于在Q点的电势能D.电子在P点的动能小于在Q点的动能【答案】D【详解】A.电场线的疏密表示场强的强弱,所以P点的电场强度小于Q点的电场强度,所以A错误;B.沿着电线方向电势逐渐降低,电场线方向总是由高的等势面指向低的等势面,则P点的电势低于Q点的电势,所以B错误;C.电子带负电,负电荷在电势越高的地方电势能越低,在电势越低的地方电势能越高,则电子在P点的电势能大于在Q点的电势能,所以C错误;D.电子所受电场力方向向右,从P到Q电场力做正功,由动能定理可得电子动能增大,所以电子在P点的动能小于在Q点的动能,所以D正确;故选D。04φ-x图像4.空间内有一与纸面平行的匀强电场,为研究该电场,在纸面内建立直角坐标系。规定坐标原点的电势为0,测得x轴和y轴上各点的电势如图1、2所示。下列说法正确的是()A.电场强度的大小为160V/mB.电场强度的方向与x轴负方向夹角的正切值为C.点(10cm,10cm)处的电势为20VD.纸面内距离坐标原点10cm的各点电势最高为20V【答案】D【详解】A.由图像斜率可知电场在x轴和y轴上的分电场分别为V/m=160V/m,V/m=120V/m则电场大小为V/mB.电场强度的方向与x轴负方向夹角的正切值为故B错误;C.规定坐标原点的电势为0,点(10cm,10cm)处的电势为V故C错误;D.纸面内距离坐标原点10cm的各点电势最高为V=20V沿着电场线方向电势逐渐降低,则点(10cm,10cm)处的电势大于20V,D正确;故选D。05Ep-x图像5.如图甲所示,光滑绝缘水平面上有一带负电荷的小滑块,可视为质点,在处以初速度沿x轴正方向运动。小滑块的质量为,带电量为。整个运动区域存在沿水平方向的电场,图乙是滑块电势能随位置x变化的部分图像,P点是图线的最低点,虚线AB是图像在处的切线,并且AB经过(1,2)和(2,1)两点,重力加速度g取。下列说法正确的是(

)A.在处的电场强度大小为20V/mB.滑块向右运动的过程中,加速度先增大后减小C.滑块运动至处时,速度的大小为2.5m/sD.若滑块恰好能到达处,则该处的电势为-50V【答案】D【详解】A.Ep-x图像斜率的绝对值表示滑块所受电场力的大小,所以滑块在x=1m处所受电场力大小为解得电场强度大小故A错误;B.滑块向右运动时,电场力先减小后增大,所以加速度先减小后增大,故B错误;C.滑块从x=1m到x=3m运动过程中电势能减小,电场力做功由动能定理得解得滑块运动至处时,速度的大小为故C错误;D.若滑块恰好到达x=5m处,则滑块恰好到达x=5m处则滑块从x=1m到x=5m运动过程中由解得滑块到达处的电势能处的电势为故D正确。故选D。06E-x图像6.如图,为方向沿轴的某电场的场强随位置坐标变化的关系图像,其中在负半轴上的图像是直线。一电子从轴上的处由静止释放,仅在电场力作用下运动,电子电荷量绝对值为(),下列说法正确的是(

)A.电子从到过程动能增量大于从到过程动能增量B.电子在处与处的电势能相等C.电子从处运动到处过程中,电势能减小了D.电子在处具有的电势能最大【答案】A【详解】A.电子从轴上的处由静止释放,沿轴负向运动,电场力做正功,电势能减小,动能增加;因图像的面积等于电势差,从到过程的电势差大于从到的电势差,根据可知电子从到过程动能增量大于从到过程动能增量,A正确;B.各点场强均为正值,则场强方向沿轴正向,则从处到处,场强方向不变,沿电场线电势降低,可知处和处电势不相等,电子在处与处的电势能不相等,B错误;C.由图像的面积可知,电子从处运动到处过程中,电势升高电势能减小了C错误。D.电子从处沿轴负向运动,电场力做正功,电势能减小,则电子在处具有的电势能不是最大,D错误。故选A。07带电粒子在电场中的直线运动7.如图所示,三块平行放置的金属薄板A、B、C中央各有一小孔,小孔分别位于O、M、P点。B板与电源正极相连,A、C两板与电源负极相连。闭合电键,从O点由静止释放一电子,电子恰好能运动到P点(不计电子的重力影响)。现将C板向右平移到点,下列说法正确的是(

)A.若闭合电键后,再从O点由静止释放电子,电子将运动到P点返回B.若闭合电键后,再从O点由静止释放电子,电子将运动到点返回C.若断开电键后,再从O点由静止释放电子,电子将运动到P和点之间返回D.若断开电键后,再从O点由静止释放电子,电子将穿过点【答案】B【详解】AB.根据题意可知电子从O到M电场力做正功,从M到P电场力做负功或从M到电场力做负功,电子在板间运动的过程,由动能定理可知将C板向右平移到点,若电键处于闭合状态,上式仍然成立,电子将运动到点返回,故A错误,B正确;CD.断开电键后,根据,,联立解得可知板间的电场强度与板间距离无关,而断开电键后可认为极板间电荷量不变,则电场强度不变,根据动能定理可知因此若断开电键后再从O点由静止释放电子,电子仍将运动到P点,故CD错误。故选B。08带电粒子在电场中的抛体运动8.如图,空间有一范围足够大的匀强电场,场强方向与梯形区域ABCD平行,已知,,,,,一比荷为的带负电粒子由A点沿AD方向以速率进入该电场,恰好可以通过C点。不计粒子的重力,下列说法正确的是()

A.D点电势为零B.场强方向由D指向BC.该粒子到达C点时速度大小为D.该粒子到达C点时速度方向与BC边垂直【答案】C【详解】B.,,可知的中点的电势为,可知为等势线,连接,做的垂线,根据沿电场线方向电势降低可知场强方向由指向,故B错误;A.由几何关系可知为的中点,有可得故A错误;C.电场强度的大小平行电场强度方向小球做匀速直线运动电场强度方向小球做匀加速直线运动解得,电场强度方向小球的速度该粒子到达C点时速度大小为故C正确;D.与延长线的夹角的正切值可知该粒子到达C点时速度方向不与BC边垂直,故D错误。故选C。

09带电粒子在电场中的圆周运动9.如图所示,光滑绝缘轨道ABC由半圆轨道AB和水平直轨道BC组成,A、B连线竖直。半圆轨道的圆心为O、半径为R,空间有如图所示的匀强电场,场强大小为,方向与水平面夹角为θ=30°,重力加速度为g。在水平直轨道上距B点L处静止释放一质量为m、电量为q的带正电小滑块,下列说法正确的是()A.无论L取何值,小滑块都能运动到A点B.小滑块在半圆轨道上运动时始终处于超重状态C.若,轨道对滑块的弹力最大值等于4mgD.若,轨道对滑块的弹力最大值等于3mg【答案】C【详解】B.对小滑块受力分析,如图合外力与水平方向夹角为,则小滑块运动到A点时小滑块减速运动,故在A点时小滑块处于失重状态,故B错误;A.假设小滑块刚好可以到达A点,在竖直方向的合外力提供向心力,根据牛顿第二定律解得设在此时小滑块在A点的速度为,则则根据动能定理解得故A错误;CD.合外力与水平方向夹角为,则OD与水平方向夹角为的D点为等效最低点,如图若,时,根据动能定理则此时,轨道对小滑块的支持力为解得故C正确,D错误。故选C。好题速练1.(2024·山东淄博·二模)如图所示,一个正方体,其上、下、左、右表面的中心分别为E、F、G、H,在E、G两点固定电荷量为的点电荷,在F、H两点固定电荷量为的点电荷,下列说法正确的是()A.、D两点电势相等B.中点处的场强与中点处的场强相同C.一带正电的试探电荷在点的电势能等于它在C点的电势能D.两点间的电势差小于两点间的电势差【答案】CD【详解】A.由空间的对称性可知,点更靠近正电荷,而D点更靠近负电荷,所以有电场的叠加可知,两点的电势不相等,点的电势大于D点的电势,故A项错误;B.四个电荷,将其E、F看成一对,G、H看成一对,则E、F为一对等量异种电荷,G、H也为一对等量异种电荷,所以该电场时两对等量异种电荷的电场的叠加。两对等量异种电荷的中心为该正方体的中心,以该中心为坐标原点O,设连线中点处为I,连线中点处为L,以OI为坐标轴的正方向,OL为坐标轴的负方向,结合等量异种电荷的电场分布可知,中点处的场强与中点处的场强大小相等,方向相反,故B项错误;C.由空间的对称性可知,到四个电荷的距离与C到四个电荷的距离相等,点和C点到正负电荷距离相等,所以有电场的叠加可知,两点的电势相等,由可知,一带正电的试探电荷在点的电势能等于它在C点的电势能,故C项正确。D.到两个正电荷的距离与到两个负电荷的距离相等,所以电势为零。B点到两个正电荷的距离与到两个负电荷的距离相等,所以B点的电势也为零。A点靠近负电荷,所以A点的电势为负,点更靠近正电荷,所以的电势为正。间电势差有间电势差为故D项正确。故选CD。2.(2024·广东韶关·二模)如图所示,空间有一正方体,a点固定电荷量为的点电荷,d点固定电荷量为的点电荷,O、分别为上下两个面的中心点,则()A.b点与c点的电场强度相同B.b点与点的电势相同C.b点与c点的电势差等于点与点的电势差D.将带正电的试探电荷由b点沿直线移动到O点,其电势能先增大后减小【答案】CD【详解】A.由对称性知,b点与c点的电场强度大小相等,但方向不同,故A错误;B.b点到a点的距离等于点到a点的距离,b点到d点的距离等于点到d点的距离,则b点与点的电势相同,若取无限远处电势为零,垂直于ad且过的平面为电势为零的等势面,点与点关于该等势面对称,两点电势绝对值相等,一正一负,故b点与点的电势不同,故B错误;C.由对称性知,b点与c点的电势差为点与点的电势差为由于则故C正确;D.对试探电荷受力分析,俯视图如图所示由图可知将带正电的试探电荷由b点沿直线移动到O点的过程中,电场力先做负功后做正功,其电势能先增大后减小,故D正确。故选CD。3.(2024·广西·三模)如图甲所示,圆形区域处在平行于纸面的匀强电场中,圆心为,半径为。为圆弧上的一个点,连线逆时针转动,为连线从位置开始旋转的角度,点电势随变化如图乙所示。下列说法正确的是()A.匀强电场的场强大小为B.匀强电场的场强方向垂直连线向右C.一氦核从A点沿圆弧运动到点,电势能增加了D.一电子从点沿圆弧逆时针运动到点,电场力先做负功后做正功【答案】AD【详解】AB.根据图像可知,当时,P位于A点,A点电势为2V;当时,P点位于P1,电势为1V,当时,P点位于P2,电势为5V。根据夹角关系可知,P1OP2位于同一条直线上,即如图所示根据等分法可知,OP1中点N的电势为2V,故AN的连线为匀强电场中的一条等势线。根据几何关系可知,AN⊥P1P2。故P1P2即为匀强电场中的一条电场线,且电场方向由P2指向P1。根据电场强度与电势差的关系可得故A正确,B错误;C.由几何关系可知,C点与OP2中点M的连线垂直P1P2,故CM为等势线,故根据等分法可知一氦核从A点沿圆弧运动到C点,电势能变化量为故C错误;D.由上可知,电场方向由P2指向P1,电子从A点沿圆弧逆时针运动到B点,电场力先做负功后做正功。故D正确。故选AD。4.(2024高三下·重庆·模拟预测)2020年2月,中国科学家通过冷冻电镜捕捉到新冠病毒表面S蛋白与人体细胞表面ACE2蛋白的结合过程,首次揭开了新冠病毒入侵人体的神秘面纱。电子显微镜是冷冻电镜中的关键部分,在电子显微镜中电子束相当于光束,通过由电场或磁场构成的电子透镜实现会聚或发散作用,其中的一种电子透镜的电场分布如图所示,其中虚线为等势面,相邻等势面间电势差相等。一电子仅在电场力作用下运动,其轨迹如图中实线所示,a、b、c是轨迹上的三点,则下列说法正确的是()A.a点的电势低于b点的电势 B.a点的电场强度大于c点的电场强度C.电子从a点到b点电势能增加 D.电子从a点到b点做加速运动【答案】AD【详解】ACD.电子所受电场力方向指向轨迹凹侧,大致向右,则电场强度方向背离轨迹凹侧,大致向左,并且垂直于等势面,根据沿电场方向电势降低可知a点的电势低于b点的电势,故电子从a点到b点电势能减小,电场力做正功,做加速运动,故AD正确,C错误;B.等势面越密集的位置电场强度越大,所以a点的电场强度小于c点的电场强度,故B错误。故选AD。5.(2024·四川巴中·模拟预测)有一电场在x轴上各点的电场强度分布如图所示。现将一带正电的粒子(不计重力)从O点静止释放,仅在电场力的作用下,带电粒子沿x轴运动,则关于该电场在x轴上各点的电势φ、带电粒子的动能、电势能以及动能与电势能之和随x变化的图像,正确的是()

A.

B.C.

D.

【答案】BD【详解】A.带正电的粒子(不计重力)从O点静止释放,仅在电场力的作用下,带电粒子沿x轴运动,则电场力方向沿x轴正方向,电场线方向沿x轴正方向。沿电场线方向电势降低,A错误;C.电场力做正功,动能增加,电势能减小,C错误;B.由图像斜率大小代表电场力大小,斜率正负代表电场力方向,由图可知,场强先减小后增大,方向一直为正方向,电场力先减小后增大,一直为正方向,与题中电场强度沿x轴变化一致,B正确;D.由能量守恒动能与电势能之和不变,D正确。故选BD。6(2024·贵州·二模)如图1所示,半径为R且位置固定的细圆环上,均匀分布着总电量为的电荷,O点为圆环的圆心,x轴通过O点且垂直于环面,P点在x轴上,它与O点的距离为d。x轴上电势的分布图,如图2所示。图线上A、B、C三点的坐标已在图2中标出。静电力常量为k,距离O点无穷远处的电势为零,则下列说法正确的是()A.圆心O点的电势为B.圆心O点的电场强度大小为C.x轴上P点电场强度的大小为D.电荷量为、质量为m的点电荷从O点以初速度沿x轴射出,此点电荷移动距离,其速度减为零【答案】ACD【详解】A.将圆环分成n个微元,每个微元均能够看为点电荷,则圆心O点的电势为即圆心O点的电势为,A正确;B.将圆环分成n个微元,每个微元均能够看为点电荷,根据对称性可知,圆心O点的电场强度大小为0,B错误;C.根据上述,令每个微元的电荷量为,微元到P点连线间距为r,微元到P点连线与x轴夹角为,则根据对称性,P点电场强度为又由于,,解得C正确;D.根据其中,解得根据图2可知,此点电荷移动距离,其速度减为零,D正确。故选ACD。7.(2024·安徽·模拟预测)已知试探电荷在场源点电荷的电场中所具有电势能表达式为,其中为静电力常量,为试探电荷与场源点电荷间的距离,且规定无穷远处的电势能为0。真空中有两个点电荷和,分别固定在坐标轴和的位置上。一带负电的试探电荷在轴上各点具有的电势能随变化关系如图所示,其中试探电荷在A、两点的电势能为零,A点的坐标是点为点电荷右边电势能最小的点,则下列说法正确的是()

A.为正电荷,为负电荷B.点电荷与电量之比为C.点对应轴位置的坐标是D.两点电荷在轴上电场强度相同的点的位置为【答案】AC【详解】A.由图可知,带负电的试探电荷在0~15间的电势能逐渐增大,可知为正电荷,为负电荷,故A正确;B.由图可知,A点的电势能为0,则有解得点电荷与电量之比为,故B错误;C.根据电势能的计算公式,可知图象的斜率代表电场力,则C点的电场力为0,有解得故C正确;D.根据点电荷产生的电场公式有解得cm故D错误;故选AC。8.(2024·湖南长沙·模拟预测)如图所示,两个等大、平行放置的均匀带电圆环相距,所带电荷量分别为、,圆心A、B连线垂直于圆环平面。以A点为坐标原点,沿AB方向建立x轴,将带正电的粒子(重力不计)从A点静止释放。粒子从A点运动到B点的过程中,下列关于电势、电场强度E、粒子的动能和电势能随位移x的变化图线中,可能正确的是()A. B.C. D.【答案】AC【详解】A.设为AB中点,根据电势的叠加可知,点的电势为0,且AB两点关于点对称,则AB两点电势大小相等,符号相反,故A正确;B.粒子在A点时,环产生的场电场强度为0,但环产生的电场强度不为0,即图像的原点处,故B错误;C.由动能定理则图像斜率为电场力,而点电场力最大,故图像处斜率最大,故C正确;D.由于AB处的电势一正一负,绝对值相等,根据可知,粒子在AB两点的电势能也一正一负,绝对值相等,故D错误。故选AC。9.(2024·湖南长沙·一模)如图甲所示,粗糙水平轨道与半径为R的竖直光滑、绝缘的半圆轨道在B点平滑连接,过半圆轨道圆心O的水平界面MN的下方分布有水平向右的匀强电场,质量为的带正电小滑块从水平轨道上A点由静止释放,运动中由于摩擦起电滑块电量会增加,过B点后电荷量保持不变,小滑块在AB段加速度随位移变化图像如图乙。小滑块从N点离开电场,其再次进入电场时,电场强度大小保持不变、方向变为水平向左。已知A、B间距离为4R且R=0.2m,滑块与轨道间动摩擦因数,重力加速度,不计空气阻力,则下列说法正确的是()A.小滑块在B点时的带电量为0.15CB.小滑块从A点释放到运动至B点过程中电荷量的变化量为0.1CC.小滑块再次进入电场后在电场中做匀变速曲线运动D.小滑块再次到达水平轨道时距B点的距离为1.2m【答案】BD【详解】AB.从A到B过程,根据牛顿第二定律在B点,根据牛顿第二定律联立以上两式解得故A错误,B正确;CD.从A到B过程从B到C过程从C点到再次进入电场做平抛运动由以上各式解得则进入电场后合力与速度共线,做匀加速直线运动从C点到水平轨道由以上各式解得距B的距离1.2m,故C错误,D正确。故选BD。10.(2024·辽宁·模拟预测)如图,空间存在范围足够大的匀强电场,场强大小,方向水平向右。竖直面内一绝缘轨道由半径为R的光滑圆弧与足够长的倾斜粗糙轨道AB、CD组成,AB、CD与水平面夹角均为45°且在B、C两点与圆弧轨道相切。带正电的小滑块质量为m,电荷量为q,从AB轨道上与圆心O等高的P点以的速度沿轨道下滑。已知滑块与AB、CD轨道间的动摩擦因数,重力加速度大小为g。下列说法正确的是()

A.滑块在AB轨道下滑时的加速度大小为gB.滑块在轨道中对轨道的最大压力为3mgC.滑块最终将在轨道之间做往复运动D.滑块在AB轨道及CD轨道上运动的总路程为2R【答案】AD【详解】A.根据题意可知重力与电场力的合力,方向垂直于AB面向下,滑块在AB轨道下滑时,有解得加速度大小为g,A正确;B.由几何关系可知,滑块在轨道的B点对轨道有最大压力,设此时滑块的速度为,轨道对滑块的支持力为,有解得根据牛顿第二定律,有解得根据牛顿第三定律,滑块在轨道中对轨道的最大压力为B错误;C.从B点到C点,电场力做负功,滑块需克服电场力做功为所以滑块在到达C点前已经减速到0,后反向滑回到B点,滑块从B点出发到滑回到B点的过程中,合力做功为零,所以速度大小不变,仍为,然后沿BA轨道上向上滑行,由于在BA轨道只有摩擦力做负功,所以最后会停在AB轨道上,C错误;D.由C选项分析可知,滑块不能经过C点,所以滑块在轨道上整个运动过程合力做功为0,滑块滑回B点时,速度依然为,设在AB轨道上滑行后减速为0,有解得所以滑块在AB轨道及CD轨道上运动的总路程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论